DOI QR코드

DOI QR Code

Damping characteristics of high efficiency direct-coupled propeller with 10MW class

고효율 직결식 10MW급 프로펠러의 감쇠특성에 관한 연구

  • Received : 2017.02.09
  • Accepted : 2017.04.22
  • Published : 2017.05.31

Abstract

Recently constructed ships are equipped with high efficiency propeller for low fuel consumption and comfortable operation. Based on the torsional vibration analysis of the shaft system of the high efficiency propeller, using the propeller damping method considering the characteristics of previous propeller designs, a considerable amount of analysis errors are found to be generated. These errors are expected to increase as the development of high efficiency vibration propellers continues. In this paper, errors in torsional vibration analysis, in accordance with various propeller damping methods, are reviewed. In addition, a propeller damping method suitable for use at present is suggested by reviewing the comparison results of analysis and measurement values according to the propeller damping methods for vessels adopting the high efficiency direct-coupled propeller with 10MW class.

최근 건조되는 선박은 연료소비량을 절감하고 안락한 운항을 위해서 고효율 프로펠러를 부착하고 있다. 이와 같이 고효율 프로펠러가 탑재됨에 따라 이전의 프로펠러 특성을 고려한 프로펠러 감쇠방법을 이용하여 해당 축계의 비틀림진동 해석을 할 경우에는 해석 오차가 많이 발생되고 있다. 이러한 오차는 고효율 프로펠러의 개발이 지속됨에 따라 더욱 커질 것으로 예상된다. 본 논문에서는 비틀림진동 해석에 적용되고 있는 각종 프로펠러 감쇠 적용방법들에 따른 해석 편차를 검토하였다. 또한 고효율 직결식 10MW급 프로펠러를 적용한 선박들을 대상으로 프로펠러 감쇠 적용방법에 따른 해석치와 계측 결과를 비교 검토하여 현 시점에서 사용상 적절한 프로펠러 감쇠방법을 제시하였다.

Keywords

References

  1. BICERA, Handbook of Torsional Vibration, Cambridge University Press, 1958.
  2. W. K. Wilson, Practical Solution of Torsional Vibration Problems, vol. 1-5, Chapman & Hall, London, 1942.
  3. H. J. Jeon and D. C. Lee, Vibration of Propulsion Shafting, Dasom publisher, 2003 (in Korean).
  4. Wartsila Switzerland Ltd, Propeller damping for torsional vibration calculation (DOC,11129), available at: http:/www.wartsila.com, Accessed September 29, 2016.
  5. S. Schuster, On the influence of the propeller and the longitudinal and torsional vibrations in the waveguide, ship and port, vol. 13, H. 6, p. 498, 1961 (in German).
  6. H. Schwankecke, Reflections on the hydrodynamic vibrations of the propeller and wall line, Yearbook, B. 57, p. 252, 1963 (in German).
  7. Man Diesel & Turbo, Propeller damping for torsional vibration calculation of MAN B&W 2-stroke engines, available at: http://marine.man.eu, Accessed September 21, 2016.
  8. Y. G. Kim, S, J. Hwang, J. S. Sun, S. G. Jung, and U. K. Kim, "A study on the effect of torsional vibration for propulsion shafting due to the characteristics of fuel saving marine engine," Proceedings of the 39th KOSME Fall Conference, p. 186, 2015 (in Korean).
  9. Y. G. Kim, S. J. Hwang, Y. H. Kim, S. W. Kim, K. H. Cho, and U. K. Kim, "Control of torsional vibration for propulsion shafting with delayed engine acceleration by optimum design of a viscous-spring damper," Journal of the Korean Society of Marine Engineering, vol. 40, no. 7, pp. 580-586, 2016 (in Korean). https://doi.org/10.5916/jkosme.2016.40.7.580

Cited by

  1. Transient Torsional Vibration Analysis of Marine Propulsion Shafting System Passing through Barred Speed Range vol.29, pp.2, 2017, https://doi.org/10.5050/ksnve.2019.29.2.236