DOI QR코드

DOI QR Code

Passive autocatalytic recombiner guide structure considering ambient flow

분위기 유동을 고려한 PAR 가이드 구조에 관한 연구

  • Ryu, Myeong-Rok (Department of Mechanical Engineering, Korea Maritime and Ocean University) ;
  • Park, Kweon-Ha (Division of Mechanical Engineering, Korea Maritime and Ocean University)
  • Received : 2017.02.10
  • Accepted : 2017.05.26
  • Published : 2017.05.31

Abstract

If a hydrogen explosion occurs in a containment building, its multiplex defense wall may be destroyed and a large amount of radioactive material may be released. The hydrogen occurred interacting with melting fuel rods must be effectively controlled and removed. however, the countermeasures for reducing explosion risk are difficult to carry out, due owing to the various variety of accident scenarios causes and the irregularity of hydrogen distribution and behavior. In this study, We examine the guide structures while considering the ambient flows, in order to improve the efficiency of PAR the widely used Passive Autocatalytic Recombiner(PAR). We simulate the fluid behavior and the hydrogen reduction rate were simulated when a guide is attached to the two-step catalyst PAR. For an upward flow, the consisting of a height of 150mm, a gap of 0mm, and a performs $60^{\circ}$ showed the best. In contrast, for a sideways flow, a consisting of the height of 150mm, a gap of 100mm, and a performs $60^{\circ}$ showed the best in the case of side ward flow. for a downward flow, a consisting of the height of 50mm and a directly attached guide produce the best in the case of down ward flow results.

격납건물에서 수소폭발이 발생된다면 다중방어벽을 훼손하고 다량의 방사능 물질을 방출시킬 수 있기 때문에 노심용융과 함께 발생되는 수소를 효과적으로 제어하고 제거해야 하지만 사고 원인의 다양성과 수소분포, 거동의 불규칙성 때문에 폭발 저감을 위한 대책마련이 쉽지 않다. 본 논문에서는 가장 넓게 사용되는 수소저감 기술인 피동촉매형수소재결합기(PAR)의 수소저감 효율을 높이기 위해 외부 유동을 고려한 가이드 구조에 관하여 연구하였다. 2단 촉매 PAR 내부형상을 기본으로 하여 PAR 외부에 가이드를 부착하였을 때 유체의 거동과 수소저감효율에 대해서 해석을 수행하였다. 유동이 아래에서 위로 올라가는 경우 가이드 높이 150mm, 촉매와 가이드 직접 부착, 가이드 각도가 $60^{\circ}$인 구조가 최적으로 판단되며 유동이 옆에서 불어오는 경우 촉매와 가이드 거리 100mm인 구조가 최적으로 판단되고, 유동이 위에서 아래로 내려오는 경우 직접부착, 높이 50mm 가이드 구조가 최적으로 판단된다.

Keywords

References

  1. T. H. Hong, T. H. Kim, and C. R. Choi, "CFD analysis on the behavior of hydrogen and steam during a severe accident in the OPR1000 containment," Proceedings of the KSME Fall Conference, p. 2223, 2011 (in Korean).
  2. M. R. Ryu and K. H. Park, "Effect of hydrogen at containment building in severe accident," Journal of the Korean Society of Marine Engineering, vol. 40, no. 3, pp. 165-173, 2016 (in Korean). https://doi.org/10.5916/jkosme.2016.40.3.165
  3. K. H. Park and K. C. Lee, "Consideration on hydrogen explosion scenario in APR1400 containment building during small breakup loss of coolant accident," Nuclear Engineering and Design, vol. 293, pp. 458-467, 2015. https://doi.org/10.1016/j.nucengdes.2015.07.041
  4. U. J. Lee and G. C. Park, "Experimental study on hydrogen behavior at a subcompartment in the containment building," Nuclear Engineering and Design, vol. 217, no. 1-2, pp. 41-47, 2002 https://doi.org/10.1016/S0029-5493(02)00136-X
  5. E. A. Reinecke, A. Bentaib, S. Kelm, W. Jahn, N. Meynet, and C. Caroli, "Open issues in the applicability of recombiner experiments and modeling to reactor simulations," Progress in Nuclear Energy, vol. 52, no. 1, pp. 136-147, 2010. https://doi.org/10.1016/j.pnucene.2009.09.010
  6. E. A. Reinecke, A. Bentaib, S. Kelm, W. Jahn, N. Meynet, and C. Caroli, "Open issues in the applicability of recombiner experiments and modeling to reactor simulations," Progress in Nuclear Energy, vol. 52, no. 1, pp. 136-147, 2010. https://doi.org/10.1016/j.pnucene.2009.09.010
  7. F. Fineschi, M. Bazzichi, and M. Carcassi, "A study on the hydrogen recombination rates of catalytic recombiners and deliberate ignition," Nucelar Engineering and Design, vol. 166, no. 3, pp. 481-494, 1996. https://doi.org/10.1016/S0029-5493(96)01264-2
  8. Z. Liang, T. Clouthier, and B. Thomas, "Experimental study of combustion behavior during continuous hydrogen injection with an operating igniter," Nuclear Engineering and Design, vol. 298, pp. 99-108, 2016. https://doi.org/10.1016/j.nucengdes.2015.12.016
  9. R. Heck, G. Kelber, K. Schmidt, and H. J. Zimmer, "Hydrogen reduction following severe accidents using the dual recombiner-igniter concept," Nuclear Engineering and Design, vol. 157, no. 3, pp. 311-319, 1995. https://doi.org/10.1016/0029-5493(95)01009-7
  10. X. G. Huang, Y. H. Yang, X. Cheng, N. H. A. Al-Hawshabi, and S. P. Casey, "Effect of spray on performance of the hydrogen mitigation system during LB-LOCA for CPR1000 NPP," Annals of Nuclear Engergy, vol. 38, no. 8, pp. 1743-1750, 2011. https://doi.org/10.1016/j.anucene.2011.04.003
  11. J. T. Kim, S. W. Hong, S. B. Kim, and H. D. Kim, "Numerical analysis of the hydrogen-steam behavior in the APR1400 containment during a hypothetical total loss of feed water accident," Korean society for computational fluids engineering, vol. 10, no. 3, pp. 9-18, 2005 (in Korean).
  12. M. R. Ryu and K. H. Park, "Proposal and analysis of new design concept of recombiner structure to reduce spontaneous ignition," Contemporary Engineering Sciences, vol. 9, no. 18, pp. 863-872, 2016. https://doi.org/10.12988/ces.2016.66102