• 제목/요약/키워드: serviceability prediction

검색결과 61건 처리시간 0.02초

확률론적 베이지언 모델링에 의한 케이블 교량의 복합열화 리스크 평가 및 예측시스템 (The Risk Assessment and Prediction for the Mixed Deterioration in Cable Bridges Using a Stochastic Bayesian Modeling)

  • 조태준;이정배;김성수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.29-39
    • /
    • 2012
  • 상관관계가 높은 복합열화의 완벽한 개별예측모델의 개발은 매우 어려운 문제로, 본 논문에서는 현수교 시스템의 미래열화와 유지 예산을 예측하기 위하여, 10년간의 유지 데이터가 주어진 매개변수(파손지표와 사용성)의 사후 확률 밀도함수를 찾기 위해 베이지언 추론을 적용하였다. 마르코프 연쇄 몬테카를로법을 이용하여 매개변수의 사후 분포를 조사하였다. 감소한 사용성의 모의위험예측은 사전분포와 연간유지 업무에서 업데이트한 데이터의 가능성에 따라 작성한 사후 분포이다. 기존의 선형 예측 모델과 비교하면, 제안된 2차 모델은 교량부품의 사용성, 위험요소, 그리고 유지 예산의 측정 데이터에 대하여 매우 개선된 수렴성과 근접성을 제공한다. 따라서 제안된 2차 추계학적 회귀 모델을 기반으로 복잡한 사회간접설비의 미래 성능과 유지관리예산을 예측하고 제어할 수 있는 기회를 제공할 것으로 기대한다.

Burst strength behaviour of an aging subsea gas pipeline elbow in different external and internal corrosion-damaged positions

  • Lee, Geon Ho;Pouraria, Hassan;Seo, Jung Kwan;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.435-451
    • /
    • 2015
  • Evaluation of the performance of aging structures is essential in the oil and gas industry, where the inaccurate prediction of structural performance can have significantly hazardous consequences. The effects of structure failure due to the significant reduction in wall thickness, which determines the burst strength, make it very complicated for pipeline operators to maintain pipeline serviceability. In other words, the serviceability of gas pipelines and elbows needs to be predicted and assessed to ensure that the burst or collapse strength capacities of the structures remain less than the maximum allowable operation pressure. In this study, several positions of the corrosion in a subsea elbow made of API X42 steel were evaluated using both design formulas and numerical analysis. The most hazardous corrosion position of the aging elbow was then determined to assess its serviceability. The results of this study are applicable to the operational and elbow serviceability needs of subsea pipelines and can help predict more accurate replacement or repair times.

부식에 의한 부착저항감소를 고려한 콘크리트 교량의 균열폭 예측 (Crack Width Prediction in Concrete Bridges Considering Bond Resistances affected by Corrosion)

  • 조태준;조효남;박미연
    • 콘크리트학회논문집
    • /
    • 제18권4호
    • /
    • pp.543-552
    • /
    • 2006
  • 사용성 한계상태로서의 균열폭 예측에 관한 현재의 교량설계 시방기준은, 부식의 시작과 진행에 의한 균열폭을 고려할 때 이론적으로 불충분하다. 균열폭은 하중, 부착, 미끄러짐, 그리고 철근이나 긴장재의 부식에 영향을 받게 된다. 콘크리트 교량의 생애주기 동안의 시간 의존적 일반부식을 고려하여, 균열폭 예측식을 제안하였다. 개발된 부식모델과 균열예측식은 프리스트레스트 콘크리트교량과 일반콘크리트교량의 설계시 시간단계별로 물-시멘트 비, 피복두께, 단면형상의 변화에 따른 극한한계상태와 사용성한계상태의 평가에 사용될 수 있다. 또한 기존교량의 시간단계별 극한 한계상태 및 사용성한계 상태의 평가를 통해서 정량적인 유지관리 및 잔존수명예측에 기여할 것으로 기대한다.

Crack growth prediction on a concrete structure using deep ConvLSTM

  • Man-Sung Kang;Yun-Kyu An
    • Smart Structures and Systems
    • /
    • 제33권4호
    • /
    • pp.301-311
    • /
    • 2024
  • This paper proposes a deep convolutional long short-term memory (ConvLSTM)-based crack growth prediction technique for predictive maintenance of structures. Since cracks are one of the critical damage types in a structure, their regular inspection has been mandatory for structural safety and serviceability. To effectively establish the structural maintenance plan using the inspection results, crack propagation or growth prediction is essential. However, conventional crack prediction techniques based on mathematical models are not typically suitable for tracking complex nonlinear crack propagation mechanism on civil structures under harsh environmental conditions. To address the technical issue, a field data-driven crack growth prediction technique using ConvLSTM is newly proposed in this study. The proposed technique consists of the four steps: (1) time-series crack image acquisition, (2) target image stabilization, (3) deep learning-based crack detection and quantification and (4) crack growth prediction. The performance of the proposed technique is experimentally validated using a concrete mock-up specimen by applying step-wise bending loads to generate crack growth. The validation test results reveal the prediction accuracy of 94% on average compared with the ground truth obtained by field measurement.

초기재령 콘크리트의 압축 기본크리프 예측 (Compressive Basic Creep Prediction in Early-Age Concrete)

  • 김성훈;송하원;변근수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.285-288
    • /
    • 1999
  • Creep is a major parameter to represent long-term behavior of concrete structures concerning serviceability and durability. The effect of creep is recently taking account into crack resistance analysis of early-age concrete concerning durability evaluation. Since existing creep prediction models were proposed to predict creep for hardened concrete, most of them cannot consider effectively the information on microstructure formation and hydration developed in the early-age concrete. In this study, creep tests for early-age concrete made of the type I cement and the type V cement are carried out respectively and creep prediction models are evaluated for the prediction of creep behavior in early-age concrete. A creep prediction model is modified for the prediction of creep in early-age concrete and also verified by comparing prediction results with results of creep tests on early-age concrete.

  • PDF

Prediction behavior of the concentric post-tensioned anchorage zones

  • Shangda Chen;Linyun Zhou
    • Advances in concrete construction
    • /
    • 제16권4호
    • /
    • pp.217-230
    • /
    • 2023
  • Methods for designing the post-tensioned anchorage zones at ultimate limit state has been specified in current design codes based on strut-and-tie models (STM). However, it is still not clear how to estimate the serviceability behavior of the anchorage zones. The serviceability is just indirectly taken into account by means of the reasonable reinforcement detailing. To address this issue, this paper is devoted to developing a modified strut-and-tie model (MSTM) to predict the behavior of concentric anchorage zones throughout the loading process. The principle of stationary complementary energy is introduced into STM at each load step to satisfy the compatibility condition and generate the unique MSTM. The structural behavior of anchorage zones can be achieved based on MSTM from loading to failure. Simplified formulas have been proposed to estimate the first cracking load, bearing capacity and maximum crack width with the consideration of the details of reinforcement bursting bars. The proposed model provides a definite method to control the bursting crack width in concentric anchorage zones. Four specimens with different bearing plate ratios have been designed and tested to validate the proposed method.

Reliability assessment of EPB tunnel-related settlement

  • Goh, Anthony T.C.;Hefney, A.M.
    • Geomechanics and Engineering
    • /
    • 제2권1호
    • /
    • pp.57-69
    • /
    • 2010
  • A major consideration in the design of tunnels in urban areas is the prediction of the ground movements and surface settlements associated with the tunneling operations. Excessive ground movements can damage adjacent building and utilities. In this paper, a neural network model is used to predict the maximum surface settlement, based on instrumented results from three separate EPB tunneling projects in Singapore. This paper demonstrates that by coupling the trained neural network model to a spreadsheet optimization technique, the reliability assessment of the settlement serviceability limit state can be carried out using the first-order reliability method. With this method, it is possible to carry out sensitivity studies to examine the effect of the level of uncertainty of each parameter uncertainty on the probability that the serviceability limit state has been exceeded.

Theoretical and experimental serviceability performance of SCCs connections

  • Maghsoudi, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • 제39권2호
    • /
    • pp.241-266
    • /
    • 2011
  • The Self Compacting Concrete, SCC is the new generation type of concrete which is not needed to be compacted by vibrator and it will be compacted by its own weight. Since SCC is a new innovation and also the high strength self compacting concrete, HSSCC behavior is like a brittle material, therefore, understanding the strength effect on the serviceability performance of reinforced self compacting concretes is critical. For this aim, first the normal and high strength self compacting concrete, NSSCC and HSSCC was designed. Then, the serviceability performance of reinforced connections consisting of NSSCC and HSSCC were investigated. Twelve reinforced concrete connections (L = 3 m, b = 0.15 m, h = 0.3 m) were simulated, by this concretes, the maximum and minimum reinforcement ratios ${\rho}$ and ${\rho}^{\prime}$ (percentage of tensile and compressive steel reinforcement) are in accordance with the provision of the ACI-05 for conventional RC structures. This study was limited to the case of bending without axial load, utilizing simple connections loaded at mid span through a stub (b = 0.15 m, h = 0.3 m, L = 0.3 m) to simulate a beam-column connection. During the test, concrete and steel strains, deflections and crack widths were measured at different locations along each member. Based on the experimental readings and observations, the cracked moment of inertia ($I_{cr}$) of members was determined and the results were compared with some selective theoretical methods. Also, the flexural crack widths of the members were measured and the applicability for conventional vibrated concrete, as for ACI, BS and CSA code, was verified for SCCs members tested. A comparison between two Codes (ACI and CSA) for the theoretical values cracking moment is indicate that, irrespective of the concrete strength, for the specimens reported, the prediction values of two codes are almost equale. The experimental cracked moment of inertia $(I_{cr})_{\exp}$ is lower than its theoretical $(I_{cr})_{th}$ values, and therefore theoretically it is overestimated. Also, a general conclusion is that, by increasing the percentage of ${\rho}$, the value of $I_{cr}$ is increased.

부식을 고려한 콘크리트 교량의 최대 균열폭 제어 (Maximum Crack Width Control in Concrete Bridges Affected By Corrosion)

  • 조태준
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.114-121
    • /
    • 2006
  • As one of the serviceability limit states, the prediction and control of crack width in reinforced concrete bridges or PSC bridges are very important for the design of durable structures. However, the current bridge design specifications do not provide quantitative information for the prediction and control of crack width affected by the initiation and propagation of corrosion. Considering life span of concrete bridges, an improved control equation about the crack width affected by time-dependent general corrosion is proposed. The developed corrosion and crack width control models can be used for the design and the maintenance of prestressed and non-prestressed reinforcements by varying time, w/c, cover depth, and geometries of the sections. It can also help the rational criteria for the quantitative management and the prediction of remaining life of concrete structures.

콘크리트 구조물의 염해부식에 따른 덮개콘크리트의 균열예측 (Prediction of Cover Concrete Cracking due to Chloride Induced Corrosion in Concrete Structures)

  • 임동우;이창홍;송하원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.291-292
    • /
    • 2009
  • 본 연구에서는 염해환경하에 있는 콘크리트 구조물의 균열 발생 및 피복콘크리트의 탈락에 대한 내구성 한계상태를 설정하여 내구 수명해석을 수행하였다. 본 연구에서 사용된 부식개시이후의 수명해석 방법은 부식에 따른 콘크리트 구조물의 내구성과 그에 따른 사용성 저하를 정량적으로 평가하는 되 유용하게 사용될 수 있다.

  • PDF