Acknowledgement
This work was supported by the faculty research fund of Sejong University in 2024 (20240311).
References
- Alahi, A., Ortiz, R. and Vandergheynst, P. (2012), "FREAK: fast retina keypoint", In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June.
- Bae, H. and An, Y.K. (2024), "Computer vision-based statistical crack quantification for concrete structures", Meas., 211, 112632. https://doi.org/10.1016/j.measurement.2023.112632
- Bae, H., Jang, K. and An, Y.K. (2021), "Deep super resolution crack network (SrcNet) for improving computer vision-based automated crack detectability in in situ bridges", Struct. Health Monit., 20(4), 1428-1442. https://doi.org/10.1177/147592172091722
- Chang, H., Shen, M., Yang, X. and Hou, J.X. (2020), "Uncertainty modeling of fatigue crack growth and probabilistic life prediction for welded joints of nuclear stainless steel", Materials, 13, 3192. https://doi.org/10.3390/ma13143192
- Ding, W., Yang, H., Yu, K. and Shu, J.P. (2023), "Crack detection and quantification for concrete structure using UAV and transformer", Automat. Constr., 152, 104929. https://doi.org/10.1016/j.autcon.2023.104929
- Geiger, A., Lenz, P., Stiller, C. and Urtasun, R. (2013), "Vision meets robotics: the KITTI dataset", Int. J. Robot Res., 32, 1231-1237. https://doi.org/10.1177/027836491349129
- Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Philos. T. R. Soc. Lond., 221, 163-198. https://doi.org/10.1098/rsta.1921.0006
- Harris, C. and Stephens, M. (1988), "A combined corner and edge detector", Proceedings of the 4th Alvey Vision Conference, Manchester, UK, August.
- Holt, E. and Leivo, M. (2004), "Cracking risks associated with early age shrinkage", Cement Concrete Compos., 26, 521-530. https://doi.org/10.1016/S0958-9465(03)00068-4
- Ioffe, S. and Szegedy, C. (2015), "Batch normalization: accelerating deep network training by reducing internal covariate shift", Proceedings of the 32nd International Conference on Machine Learning, Lille, France, July.
- Ismail, M., Muhammad, B. and Ismail, M.E. (2010), "Compressive strength loss and reinforcement degradations of reinforced concrete structure due to long-term exposure", Const. Build Mater., 24, 898-902. https://doi.org/10.1016/j.conbuildmat.2009.12.003
- Jang, K., An, Y.K., Kim, B. and Cho, S. (2021), "Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot", Comput.-Aided Civ. Inf., 36, 14-29. https://doi.org/10.1111/mice.12550
- Jang, K., Jung, H. and An, Y.K. (2022), "Automated bridge crack evaluation through deep super resolution network-based hybrid image matching", Automat. Constr., 137, 104229. https://doi.org/10.1016/j.autcon.2022.104229
- Jang, K., Park, S., Jung, H., Yoo, H. and An, Y.K. (2024), "Deep learning-based 3D digital damage map of vertical-type tunnels using unmanned fusion data scanning", Comput.-Aided Civ. Inf. 162, 105397. https://doi.org/10.1016/j.autcon.2024.105397
- Koh, E., Jin, S.S. and Kim, R.E. (2022), "Physical interpretation of concrete crack images from feature estimation and classification", Smart Struct. Syst., Int. J., 30(4), 385-395. https://doi.org/10.12989/sss.2022.30.4.385
- Lai, J., Cai, J., Chen, Q.J., He, A. and Wei, M.Y. (2020), "Influence of crack width on chloride penetration in concrete subjected to alternating wetting-drying cycles", Mater., 13(17), 3801. https://doi.org/10.3390/ma13173801
- Lam, L., Lee, S.W. and Suen, C.Y. (1992), "Thinning methodologies-a comprehensive survey", IEEE T. Pattern Anal., 14, 869-885. https://doi.org/10.1109/34.161346
- Nair, V. and Hinton, G.E. (2010), "Rectified linear units improve restricted Boltzmann machines", Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel.
- Ni, F.T., Zhang, J. and Chen, Z.Q. (2019), "Pixel-level crack delineation in images with convolutional feature fusion", Struct. Control Health Monit., 26(1), e2286. https://doi.org/10.1002/stc.2286
- Otsu, N. (1979), "A threshold selection method from gray-level histograms", IEEE T. Syst. Man Cyb., 9, 62-66. https://doi.org/10.1109/TSMC.1979.4310076
- Paris, P. and Erdogan F. (1963), "A critical analysis of crack propagation laws", J. Fluid Eng., 85, 528-533. https://doi.org/10.1115/1.3656900
- Pierson, K., Rahman, A. and Spear, A.D. (2019), "Predicting microstructure-sensitive fatigue crack path in 3D using machine learning framework", Jom., 71(8), 2680-2694. https://doi.org/10.1007/s11837-019-03572-y
- Qi, Y., Yuan, C., Kong, Q., Xiong, B. and Li, P. (2021), "A deep learning-based vision enhancement method for UAV assisted visual inspection of concrete cracks", Smart Struct. Syst., Int. J., 27(6), 1031-1040. https://doi.org/10.12989/sss.2021.27.6.1031
- Raja, A., Chukka, S.T. and Jayaganthan, R. (2020), "Prediction of fatigue crack growth behaviour in ultrafine grained Al 2014 alloy using machine learning", Metals, 10(10), 1349. https://doi.org/10.3390/met10101349
- Rao, R.P.N. and Ballard, D.H. (1999), "Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects", Nat. Neurosci., 2, 79-87. https://doi.org/10.1038/4580
- Reagan, D., Sabato, A. and Niezrecki, C. (2018), "Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges", Struct. Health Monit., 17(5), 1056-1072. https://doi.org/10.1177/1475921717735326
- Rovinelli, A., Sangid, M.D., Proudhon, H. and Ludwig, W. (2018), "Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials", Npj. Comp. Mater., 4(35). https://doi.org/10.1038/s41524-018-0094-7
- Safiuddin, M., Kaish, A.B.M., Woon, C.O. and Raman, S.N. (2018), "Early-age cracking in concrete: causes, consequences, remedial measures, and recommendations", Appl. Sci., 8, 1730. https://doi.org/10.3390/app8101730
- Special act on the safety control and maintenance of establishments, Land, Infrastructure and Transport, KLRI.
- Straka, Z., Svoboda, T. and Hoffmann, M. (2023), "PreCNet: next-frame video prediction based on predictive coding", IEEE T. Neur. Net. Lear., 2023, 1-15. https://doi.org/10.1109/TNNLS.2023.3240857
- Torr, P.H.S. and Zisserman, A. (2000), "MLEASC: a new robust estimator with application to estimating image geometry", Comp. Vis. Image Und., 78, 138-156. https://doi.org/10.1006/cviu.1999.0832
- Wang, X.Y. (2018), "Effects of crack and climate change on service life of concrete subjected to carbonation", Appl. Sci., 8, 572. https://doi.org/10.3390/app8040572
- Wang, B.X., Zhao, W.G., Du, Y.L., Zhang, G.Y. and Yang, Y. (2016), "Prediction of fatigue stress concentration factor using extreme learning machine", Comp. Mater. Sci., 125, 136-145. https://doi.org/10.1016/j.commatsci.2016.08.035
- Wu, P., Liu, A., Fu, J., Ye, X. and Zhao, Y. (2022), "Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm", Eng. Strut., 272, 114962. https://doi.org/10.1016/j.engstruct.2022.114962
- Xu, Y., Fan, Y.L. and Li, H. (2023), "Lightweight semantic segmentation of complex structural damage recognition for actual bridges", Struct. Health Monit., 22(5). https://doi.org/10.1177/14759217221147015
- Yu, F., Chen, H.F., Wang, X., Wian, W.Q., Chen, Y.Y., Liu, F.C., Madhavan, V. and Darrell, T. (2020), "BDD100K: a diverse driving dataset for heterogeneous multitask learning", In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, June.
- Yu, S., Yan, C., Liu, C.Y. and Pu, J.P. (2023), "Fatigue life evaluation of parallel steel-wire cables under the combined actions of corrosion and traffic load", Struct. Control Health Monit., 2023, https://doi.org/10.1155/2023/5806751