• Title/Summary/Keyword: series model

Search Result 5,383, Processing Time 0.038 seconds

A Fractional Integration Analysis on Daily FX Implied Volatility: Long Memory Feature and Structural Changes

  • Han, Young-Wook
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.2
    • /
    • pp.23-37
    • /
    • 2022
  • Purpose - The purpose of this paper is to analyze the dynamic factors of the daily FX implied volatility based on the fractional integration methods focusing on long memory feature and structural changes. Design/methodology/approach - This paper uses the daily FX implied volatility data of the EUR-USD and the JPY-USD exchange rates. For the fractional integration analysis, this paper first applies the basic ARFIMA-FIGARCH model and the Local Whittle method to explore the long memory feature in the implied volatility series. Then, this paper employs the Adaptive-ARFIMA-Adaptive-FIGARCH model with a flexible Fourier form to allow for the structural changes with the long memory feature in the implied volatility series. Findings - This paper finds statistical evidence of the long memory feature in the first two moments of the implied volatility series. And, this paper shows that the structural changes appear to be an important factor and that neglecting the structural changes may lead to an upward bias in the long memory feature of the implied volatility series. Research implications or Originality - The implied volatility has widely been believed to be the market's best forecast regarding the future volatility in FX markets, and modeling the evolution of the implied volatility is quite important as it has clear implications for the behavior of the exchange rates in FX markets. The Adaptive-ARFIMA-Adaptive-FIGARCH model could be an excellent description for the FX implied volatility series

Short-term Construction Investment Forecasting Model in Korea (건설투자(建設投資)의 단기예측모형(短期豫測模型) 비교(比較))

  • Kim, Kwan-young;Lee, Chang-soo
    • KDI Journal of Economic Policy
    • /
    • v.14 no.1
    • /
    • pp.121-145
    • /
    • 1992
  • This paper examines characteristics of time series data related to the construction investment(stationarity and time series components such as secular trend, cyclical fluctuation, seasonal variation, and random change) and surveys predictibility, fitness, and explicability of independent variables of various models to build a short-term construction investment forecasting model suitable for current economic circumstances. Unit root test, autocorrelation coefficient and spectral density function analysis show that related time series data do not have unit roots, fluctuate cyclically, and are largely explicated by lagged variables. Moreover it is very important for the short-term construction investment forecasting to grasp time lag relation between construction investment series and leading indicators such as building construction permits and value of construction orders received. In chapter 3, we explicate 7 forecasting models; Univariate time series model (ARIMA and multiplicative linear trend model), multivariate time series model using leading indicators (1st order autoregressive model, vector autoregressive model and error correction model) and multivariate time series model using National Accounts data (simple reduced form model disconnected from simultaneous macroeconomic model and VAR model). These models are examined by 4 statistical tools that are average absolute error, root mean square error, adjusted coefficient of determination, and Durbin-Watson statistic. This analysis proves two facts. First, multivariate models are more suitable than univariate models in the point that forecasting error of multivariate models tend to decrease in contrast to the case of latter. Second, VAR model is superior than any other multivariate models; average absolute prediction error and root mean square error of VAR model are quitely low and adjusted coefficient of determination is higher. This conclusion is reasonable when we consider current construction investment has sustained overheating growth more than secular trend.

  • PDF

Regression Quantile Estimators of a Nonlinear Time Series Regression Model

  • Kim Tae Soo;Hur Sun;Kim Hae Kyung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.13-15
    • /
    • 2000
  • In this paper, we deal with the asymptotic properties of the regression quantile estimators in the nonlinear time series regression model. For the sinusodial model which frequently appears fer a time series analysis, we study the strong consistency and asymptotic normality of regression quantile ostinators.

  • PDF

Reliability for Series System in Bivariate Weibull Model under Bivariate Type I Censorship

  • Cho, Jang-Sik;Cho, Kil-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.571-578
    • /
    • 2003
  • In this paper, we consider two components system which have bivariate weibull model with bivariate type I censored data. We proposed maximum likelihood estimator and relative frequency estimator for the reliability of series system. Also, we construct approximate confidence intervals for the reliability based on the two proposed estimators. And we present a numerical study.

  • PDF

A study for setting prior allocation of redundancy in parallel series system (체계중복 설정문제에 있어서 Redundancy 우선배치에 관한 연구)

  • 조남호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.9 no.14
    • /
    • pp.45-48
    • /
    • 1986
  • This paper studies reliability growth model in redundancy allocation of Parallel-series system in which several series system is linked parallelly, The model is generalized by system redundancy of sub-system that have components redundancy. The stage of components in each sub-system is established differently. At the same time by assigned the different number of constraints to the sub-system, this paper deals with rather practical reliability growth model.

  • PDF

The Forecasting Power Energy Demand by Applying Time Dependent Sensitivity between Temperature and Power Consumption (시간대별 기온과 전력 사용량의 민감도를 적용한 전력 에너지 수요 예측)

  • Kim, Jinho;Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, we proposed a model for forecasting power energy demand by investigating how outside temperature at a given time affected power consumption and. To this end, we analyzed the time series of power consumption in terms of the power spectrum and found the periodicities of one day and one week. With these periodicities, we investigated two time series of temperature and power consumption, and found, for a given hour, an approximate linear relation between temperature and power consumption. We adopted an exponential smoothing model to examine the effect of the linearity in forecasting the power demand. In particular, we adjusted the exponential smoothing model by using the variation of power consumption due to temperature change. In this way, the proposed model became a mixture of a time series model and a regression model. We demonstrated that the adjusted model outperformed the exponential smoothing model alone in terms of the mean relative percentage error and the root mean square error in the range of 3%~8% and 4kWh~27kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric energy together with the outside temperature.

On A New Framework of Autoregressive Fuzzy Time Series Models

  • Song, Qiang
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.357-368
    • /
    • 2014
  • Since its birth in 1993, fuzzy time series have seen different classes of models designed and applied, such as fuzzy logic relation and rule-based models. These models have both advantages and disadvantages. The major drawbacks with these two classes of models are the difficulties encountered in identification and analysis of the model. Therefore, there is a strong need to explore new alternatives and this is the objective of this paper. By transforming a fuzzy number to a real number via integrating the inverse of the membership function, new autoregressive models can be developed to fit the observation values of a fuzzy time series. With the new models, the issues of model identification and parameter estimation can be addressed; and trends, seasonalities and multivariate fuzzy time series could also be modeled with ease. In addition, asymptotic behaviors of fuzzy time series can be inspected by means of characteristic equations.

Application of Volterra Series to Modeling an Elastomer Force-Displacement Relation (고무의 힘-변위 관계를 나타내는 모델링에의 볼테라 급수의 응용)

  • Sung, Dan-Keun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.71-78
    • /
    • 1989
  • The imput-output relations for nonlinear systems can be explicitly represented by the Volterra series and they can be characterized by the Volterra kernels. This study is concerned with modeling an elastomer force-displacement relation due to step inputs by utilizing the truncated Volterra series. Since it is practically impossible to apply step inputs that have infinite slope at zero time, the loads due to constant penetration(displacement) rate followed by constant penetration inputs are measured as an alternative approach and estimated for step inputs and then utilized for the truncated Volterra series models. One second order and one third order truncated Volterra series models have been employed to model the force-displacement relation which is one of the prominent properties to characterize the viscoelastic material. The third order truncated Volterra series model has better results, compared with those of the second order truncated Volterra series model.

  • PDF

A Study on Improving Prediction Accuracy by Modeling Multiple Similar Time Series (다중 유사 시계열 모델링 방법을 통한 예측정확도 개선에 관한 연구)

  • Cho, Young-Hee;Lee, Gye-Sung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.137-143
    • /
    • 2010
  • A method for improving prediction accuracy through processing time series data has been studied in this research. We have designed techniques to model multiple similar time series data and avoided the shortcomings of single prediction model. We predicted the future changes by effective rules derived from these models. The methods for testing prediction accuracy consists of three types: fixed interval, sliding, and cumulative method. Among the three, cumulative method produced the highest accuracy.

A Study on the Way to Improve Quality of Asset Portfolio Management Using Structural Time-Series Model (구조적 시계열모형을 이용한 자산포트폴리오 관리의 개선 방안)

  • 이창수
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.160-171
    • /
    • 2003
  • Criteria for the comparison of quality of asset portfolio management are risk and return. In this paper a method to use structural time-series model to determine an optimal portfolio for the improvement of quality of asset portfolio management is suggested. In traditional mean variance analysis expected return is assumed to be time-invariant. However, it is more realistic to assume that expected return is temporally dynamic and structural time-series model can be used to reflect time-varying nature of return. A data set from an insurance company was used to show validity of suggested method.