Journal of information and communication convergence engineering
/
v.21
no.1
/
pp.82-89
/
2023
Various machine-learning models may yield high predictive power for massive time series for time series prediction. However, these models are prone to instability in terms of computational cost because of the high dimensionality of the feature space and nonoptimized hyperparameter settings. Considering the potential risk that model training with a high-dimensional feature set can be time-consuming, we evaluate a feature-importance-based feature selection method to derive a tradeoff between predictive power and computational cost for time series prediction. We used two machine learning techniques for performance evaluation to generate prediction models from a retail sales dataset. First, we ranked the features using impurity- and Local Interpretable Model-agnostic Explanations (LIME) -based feature importance measures in the prediction models. Then, the recursive feature elimination method was applied to eliminate unimportant features sequentially. Consequently, we obtained a subset of features that could lead to reduced model training time while preserving acceptable model performance.
This study is concerned with modeling an elastomer constitutive relation by utilizing the truncated Volterra series. Actual experimental data from the Instron Tester are obtained for combined input, i.e. constant strain rate followed by a constant strain input. These data are then estimated for step inputs and utilized for the truncated Volterra series models. One second order and one third order truncated Volterra series models have been employed to estimated the force-displacement relation which is one of the prominent properities to characterize the viscoelastic material. The third order Volterra series model has better results, compared with those of the second order Volterra series model.
Journal of the Society of Naval Architects of Korea
/
v.57
no.5
/
pp.305-311
/
2020
This study presents a probabilistic time series forecast of ship structural response using Bayesian inference combined with Volterra linear model. The structural response of a ship exposed to irregular wave excitation was represented by a linear Volterra model and unknown uncertainties were taken care by probability distribution of time series. To achieve the goal, Volterra series of first order was expanded to a linear combination of Laguerre functions and the probability distribution of Laguerre coefficients is estimated using the prepared data by treating Laguerre coefficients as random variables. In order to check the validity of the proposed methodology, it was applied to a linear oscillator model containing damping uncertainties, and also applied to model test data obtained by segmented hull model of 400,000 DWT VLOC as a practical problem.
Under the case that we know the period and the reason of external events, we reviewed the method of model identification, parameter estimation and model diagnosis with the former papers that have been studied about the linear time series model with intervention, and compared with nonlinear time series model such as ARCH, GARCH model that it has been used widely in economic models, and also we compared with the combination prediction method that Tong(1990) introduced.
In satellite remote sensing, irregular temporal sampling is a common feature of geophysical and biological process on the earth's surface. Lee (2008) proposed a feed-back system using a harmonic model of single period to adaptively reconstruct observation image series contaminated by noises resulted from mechanical problems or environmental conditions. However, the simple sinusoidal model of single period may not be appropriate for temporal physical processes of land surface. A complex model of multiple periods would be more proper to represent inter-annual and inner-annual variations of surface parameters. This study extended to use a multi-periodic harmonic model, which is expressed as the sum of a series of sine waves, for the adaptive system. For the system assessment, simulation data were generated from a model of negative errors, based on the fact that the observation is mainly suppressed by bad weather. The experimental results of this simulation study show the potentiality of the proposed system for real-time monitoring on the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather.
Kim, Hung-Soo;La, Chang-Jin;Kim, Joong-Hoon;Kang, In-Joo
Journal of Korea Water Resources Association
/
v.35
no.5
/
pp.631-638
/
2002
Stochastic model has been widely used for the forecasting of time series. However, this study tries to perform the precipitation forecasting by fuzzy time series model using fuzzy concept. The published fuzzy based models are used for the forecasting of time series and also we suggest that the combination of fuzzy time series models and neuro-fuzzy system can increase the forecastibility of the models. The precipitation time series in illinois, USA is analyzed for the forecasting by the known fuzzy time series models and the suggested methodology in this study. As a result, we know that the suggested methodology shows more exact results than the known models.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1993.06a
/
pp.857-860
/
1993
In this paper, we apply the self generating neuro fuzzy model (SGNFM) to the dimension analysis of the chaotic time series. Firstly, we formulate a nonlinear time series identification problem with nonlinear autoregressive (NARMAX) model. Secondly, we propose an identification algorithm using SGNFM. We apply this method to the estimation of embedding dimension for chaotic time series, since the embedding dimension plays an essential role for the identification and the prediction of chaotic time series. In this estimation method, identification problems with gradually increasing embedding dimension are solved, and the identified result is used for computing correlation coefficients between the predicted time series and the observed one. We apply this method to the dimension estimation of a chaotic pulsation in a finger's capillary vessels.
In this paper, we deal with the asymptotic properties of the least absolute deviation estimators in the nonlinear time series regression model. For the sinusodial model which frequently appears in a time series analysis, we study the strong consistency and asymptotic normality of least absolute deviation estimators. And using the derived limiting distributions we show that the least absolute deviation estimators is more efficient than the least squared estimators when the error distribution of the model has heavy tails.
Journal of Korean Society for Atmospheric Environment
/
v.4
no.2
/
pp.72-81
/
1988
The typical ARIMA model which was developed by Box and Jenkins, was applied to the monthly $SO_2$ data collected at Seoungsoo and Oryudong in metropolitan area over five years, 1982 to 1986. To find out the changing pattern of $SO_2$ concentration, autocorrelation and partial autocorrelation analysis were undertaken. The three steps of time series model building were followed and the residual series was found to be a random white noise. The results of this study is summarized as follows. 1) The monthly $SO_2$ series was found to be a non-stationary series which which has a periodicity of 12 months. After eliminating the periodicity by differencing, the monthly $SO_2$ series became a stationary series. 2) The ARIMA seasonal model of the $SO_2$ was determined to be ARIMA $(1, 0, 0)(0, 1, 0,)_{12}$ model. 3) The model equations based on the prediction were: for Seoungsoodong: $Y_t = 0.5214Y_{t-1} + Y_{t-12} - 0.5214Y_{t-13} + a_t$ for Oryudong: $Y_t = 0.8549Y_{t-1} + Y_{t-12} - 0.8549Y_{t-13} + a_t$ 4) The validity of the model identified was checked by compairing the measured $SO_2$ values and one-month-ahead predicted values. The result of correlation and regression analysis is as follows. Seoungsoodong: $Y = 0.8710X + 0.0062 r = 0.8768$ Oryudong : $Y = 0.8758X + 0.0073 r = 0.9512$
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.1
/
pp.25-33
/
2009
Recently, the TS fuzzy models that include the linear equations in the consequent part are widely used for time series forecasting, and the prediction performance of them is somewhat dependent on the characteristics of time series such as stationariness. Thus, a new prediction method is suggested in this paper which is especially effective to nonstationary time series prediction. First, data preprocessing is introduced to extract the patterns and regularities of time series well, and then multiple model TS fuzzy predictors are constructed. Next, an appropriate model is chosen for each input data by an adaptive model selection mechanism based on rough sets, and the prediction is going. Finally, the error compensation procedure is added to improve the performance by decreasing the prediction error. Computer simulations are performed on typical cases to verify the effectiveness of the proposed method. It may be very useful for the prediction of time series with uncertainty and/or nonstationariness because it handles and reflects better the characteristics of data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.