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Abstract

In this paper, we apply the sclf generating neuro
fuzzy model (SGNFM) to the dimension analysis of
the chaotic time scries. Firstly, we formulate a
nonlinear time secries identification problem with
nonlinear autoregressive (NARMAX) modcl.

Secondly, we propose an identification algorithm
using SGNFM. We apply this method to the
estimation of embedding dimension for chaotic time
series, since the embedding dimension plays an
essential role for the identification and the prediction
of chaotic time series. In this estimation method,
identification problems with gradually increasing
embedding dimension are solved, and the identificd
result is used for computing correlation cocfficicnts
between the predicted time series and the observed one.
We apply this method to the dimcnsion estimation of
a chaotic pulsation in a finger's capillary vessels.

1. Introduction

The identification and prediction of a system is a
fundamental task, not limited only to the ficld of
engineering, but in all kinds of other fields as well. So
far, studies on identification and prediction of time
series using neural networks and radial basis function
have been reported [2,6]. For the identfication and
prediction of these kinds of nonlincar dynamical
systems, the time series which we can actually
measure are often time series of only one variable.
Therefore, to identify the original dynamical system,
we need to reconstruct the system state space based on
the embedding theorem([3] of Takens. In doing that,
we have o appropriately determine the cmbedding
dimension and delay time. In regard to the dimension
estimation, Grassberger and Procaccia [4) suggested a
method of estimating the original system's dimcnsion
in seeking by use of the corrclation dimension. Also
Sugihara and May [5] proposed a technique for
estimating the original systcm's dimension from the

correlation coefficient between the predicted and
obscrved data for a model determined by using a
reconstructd state space vector. Grassberger's method
with the correlation dimension requires a time series of
10* order. But in contrast with the Grassberger's
mcthod, the advantage of Sugihara's mcthod is that it
requires fewcr data values to estimate the dimension.

In this paper, we apply the sclf generating neuro
fuzzy model (SGNFM) to the dimension analysis of
the chaotic time series. By using SGNFM, we can
automatically determine the smallest number of basis
functions required to achicve a model with the desired
degree of accuracy. We apply this method to the
dimension cstimation of a chaotic pulsation in a
finger's capillary vesscls.

2. Nonlinear Autoregressive Model
Using Self Generating Neuro
Fuzzy Model

For a nonlinear autoregressive model, if we do not
consider the control input, and if the input vector prior

to time t is taken to be y=(y(t-1), y(t-2), *--, y(t-s)),

then the output y(t) at time t can be expressed by (1);
y(@® = fy(t-1), y(t-2), =+, y(t-s)) 0))
To identify the function f in (1), several methods
using neural networks or fuzzy model are reported. In
this paper, we use self generating ncuro fuzzy model
(SGNFM) with gaussian type radial basis function. In
SGNFM, we can automatically determine the least
number of basis function numbers to accomplish a
given dcgree of model error. Representing the
nonlinear autorcgressive model using a three-layered
ncural network with onc output, then in the case
where s inputs are given for the model, the unit
number of the hidden layer can be determined
automatically by the self generating algorithm [6,7]
(Fig.1).

(a), (b), and (c) in Fig.l, are nonlinear
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autoregressive models for identifying the output y(t)
from the previous 1 input, two inputs, and s inputs,
respectively. The identification of the models is carried
out by approximating the value of the functions f,, f,,

==, £, in (2);
y(®) = £,(y(t-1))
y() = L(y(t-1), y(-2))

y(®) = £(y(t-1), y(&2), -+, y(t-s)) 2

The functions £,, f,, ---, {, of (2) are determined by

neuro fuzzy model with radial basis function as shown
in (3);
al

fl = zlwk/lk(xly&(’h) ) x1=Y(t‘l)
K=

n2
f2 =2 Wy # k(lzrgk rhk) ’ .).(.2=(Y(t° 1)»)’(“2))
k=1

ns

f= Elwk# c&eodeby) s X =0y (-1),y(t-2).....y(t-s)) (3)
k=

where n;, n,, **-, n_ are basis function numbers, a,
€ R*%, b € R®, k=1,"-",n, are center value vector and
width value vector of RBF, respectively, and w,, k=1,
-*+,n, are conclusion part of k-th basis.

In addition,

# o Xedyoby) = _Hl Au(y(t-i) .2, byy) @)

A;k(Y(t'i)vaikrbik) = exp(-(y(t-i) - aik)Z/ bjk) &)

A, is the radial basis function for the input
component y(t-i) which has b, as its width of the
distribution, and a,, at its centcr. Various function
forms for A, can be taken [7], but here we use
Gaussian basis functions as in (5). Let us introduce

the following parameter vectors 2" €R®”, b" E€R®T,

wh €R™ defined by (6) when the number of RBF is n;
§"=(§1,...,§k,...,§n) € R%"
.‘?.n=(l_)l""’2k""'hn) € RS"
2“=(w1,...,wk’...'wn) e RS ©6)

Then, the nonlinear identification problem by

NFM is to determine the minimal number of basis n
and optimal modcl paramcter values which satisfy

E (" "W < e )
where
1 N
E_@ b"w") =—2—2 P — *yP)? ®
p=1

and (*2",*b",*w") arc optimal solution which

minimizes E with n fuzzy rules or n hidden units in

hidden layer, and yP, *y? arc p-th output data and
inference output, respectively.

To solve the above problem, we proposed a sclf
generating algorithm called MAE (Maximum
Absolute Error) selection mcthod [6,7). By using
MAE method, we can automatically determine the
minimum number of basis functions to satisfy the
incquality (7), where ¢ is a any desircd model

accuracy specified by the designer. This method is very
effective cspecially for this kind of dynamical system
identification problem, since so many model structure
identification problems and model parameter
optimization problems with different inputs'
dimension must be solved.

3. Estimating the Dimension of
Nonlinear Dynamical System

Even in a dynamical system that can be expressed

by multi-dimensional statc variables, what we can

actually measure in our expriments is ofien time series

data of just onc variable. Takens [3] showed that it is

possible for the attractor of the original multi-

dimensional dynamical system to be restructured in a

Dt dimensional state space (Fig.2), using the state

space vector represented in (9);

¥, = {y(1),y(1-Td), ---, y(1-(De-1)Td)}

¥ = Y@, G-Td), *, yG-(De-1)Td))

¥y = {y®), yIN-Td), -+, y(N-(De-1)Td)} (9)
where DE is an embedding dimension and Td is a
appropriatc delay time, which is determined by the
autocorrclation of the original time series y(t).
Suitable value of Td is such a time at which the value
of autocorrelation of the y(t) becomes 0 initially.
Now for the dimension D of the original
dynamical system, if the embedding dimension DE
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equals 2D+1 or more, then the attractor of the original
dynamical system can be embedded in the reconstructed
state space.

Sugihara and May suggest a technique for
estimating the dimension of the original nonlinear
dynamical system using identification and prediction
procedure. In this estimation method, identification
problems with gradually incrcasing embedding
dimension are solved, and the identified result is used
for computing correlation coefficients between the
predicted time series and the observed one. The
correlation coefficien p is defined by (10) between

original time series y(t) and predicted time series y'(t),
t=1,"-"M;
p=(1/M) Zl GOy YOOy )~

2 o2
v/ (l/M)%(y(t)-ym) v (1/M)>%(y(t)-ym) (10)

where Yo ¥’ are mean value of y(t), y'(t), t=1,.M,

respectively. The most suitable embedding dimenston
De is such that it gives the maximal corrclation
cocefficient value.

We applied above method to estimate the
dimension of a human pulse wave. In Fig.3, we show
a normalized time scrics for a human pulse measured
during a thirty-sccond interval, with a sampling time
of 19.5 msec, and with the amplitude pulsc valucs
normalized betwecen a range of -1.0 to 1.0. The
number of samples is 1792. In identifying the modcl,
600 samples were taken from the first half of the pulse
wave time series as learning data. In this learning
data, the delay time Td is taken as 234 mscc. (19.5
msec. x 12, sec Fig.4). By modifying the embedding
dimension from 1 to 15, we uscd a reconstructed state
space vector, identified models with different
dimensions. Total learning iterations is 5,000.

By using thus identificd models, the predicted time
serics y'(t) for different embedding dimension De arc
computed. Then, we calculate corrclation coefficient
o between the actually measured and predicted valucs

obtained by using six hundred sets of data with the
latter half of the model. We show the rclation between
¢ and De in Fig.5. As shown in Fig.5, since the

correlation is highest when the embedding dimension
DE is in the 4-6 range, it can be said that the
dimension of the the pulse wave's dimension is in the
2-3 range bascd upon the Takens' Theorem.

4. Conclusion
In this research, we have discussed a method for
calculating the dimension of a nonlinear dynamical

system, based on a time scrics from one measured
variable, using the corrclation coefficient between
predicted and measurcd values of a nonlinear
autoregressive model. We applied this method to
estimate the a chaotic pulsation in a finger's capillary
vessels.

For a time-varying nonlincar dynamical system, it
can be said that the statistical characteristics of a
measurcd time series are constantly changing. In this
kind of a situation, it is necessary to calculate the
dimension by varying the structure of the model to
adapt to that structure change of the system. One of
the future research direction is to develop a method for
identifying a time-varying nonlinear dynamical system
whilc considering the fractal dimension of time series
and simultancously modifying the structure of the
model accordingly.
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