• Title/Summary/Keyword: series model

Search Result 5,386, Processing Time 0.03 seconds

Evaluation and estimation of the number of pigs raised and slaughtered using the traceability of animal products

  • Sukho Han
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.1
    • /
    • pp.61-75
    • /
    • 2022
  • The first purpose of this study is to evaluate the usefulness of pork traceability data, which is monthly time-series data, and to draw implications with regard to its usefulness. The second purpose is to construct a dynamic ecological equation model (DEEM) that reflects the biological characteristics at each growth stage, such as pregnancy, birth and growth, and the slaughter of pigs, using traceability data. With the monthly pig model devised in this study, it is expected that the number of slaughtered animals (supply) that can be shipped in the future is predictable and that policy simulations are possible. However, this study was limited to traceability data and focused only on building a supply-side model. As a result of verifying the traceability data, it was found that approximately 6% of farms produce by mixing great grand parent (GGP), grand parent (GP), parent stock (PS), and artificial insemination (AI), meaning that it is necessary to separate them by business type. However, the analysis also showed that the coefficient values estimated by constructing an equation for each growth stage were consistent with the pig growth outcomes. Also, the model predictive power test was excellent. For this reason, it is judged that the model design and traceability data constructed with the cohort and the dynamic ecological equation model system considering biological growth and shipment times are excellent. Finally, the model constructed in this study is expected to be used as basic data to inform producers in their decision-making activities and to help with governmental policy directions with regard to supply and demand. Research on the demand side is left for future researchers.

Validation Technique of Trace-Driven Simulation Model Using Weighted F-measure (가중 F 척도를 이용한 Trace-Driven 시뮬레이션 모델의 검증 방법)

  • HwangBo, Hoon;Cheon, Hyeon-Jae;Lee, Hong-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.185-195
    • /
    • 2009
  • As most systems get more complicated, system analysis using simulation has been taken notice of. One of the core parts of simulation analysis is validation of a simulation model, and we can identify how well the simulation model represents the real system with this validation process. The difference between input data of two systems has an effect on the comparison between a simulation model and a real system at validation stage, and the result with such difference is not enough to ensure high credibility of the model. Accordingly, in this paper, we construct a model based on Trace-driven simulation which uses identical input data with the real system. On the other hand, to validate a model by each class, not by an unique statistic, we validate the model using a metric transformed from F-measure which estimates performance of a classifier in data mining field. Finally, this procedure enables precise validation process of a model, and it helps modification by offering feedback at the validation phase.

Proposal of Process Model for Research Data Quality Management (연구데이터 품질관리를 위한 프로세스 모델 제안)

  • Na-eun Han
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.1
    • /
    • pp.51-71
    • /
    • 2023
  • This study analyzed the government data quality management model, big data quality management model, and data lifecycle model for research data management, and analyzed the components common to each data quality management model. Those data quality management models are designed and proposed according to the lifecycle or based on the PDCA model according to the characteristics of target data, which is the object that performs quality management. And commonly, the components of planning, collection and construction, operation and utilization, and preservation and disposal are included. Based on this, the study proposed a process model for research data quality management, in particular, the research data quality management to be performed in a series of processes from collecting to servicing on a research data platform that provides services using research data as target data was discussed in the stages of planning, construction and operation, and utilization. This study has significance in providing knowledge based for research data quality management implementation methods.

Voxel-wise Mapping of Functional Magnetic Resonance Imaging in Impression Formation

  • Jeesung Ahn;Yoonjin Nah;Inwhan Ko;Sanghoon Han
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.77-94
    • /
    • 2022
  • Social interactions often involve encountering inconsistent information about social others. We conducted a functional magnetic resonance imaging (fMRI) study to comprehensively investigate voxel-wise temporal dynamics showing how impressions are anchored and/or adjusted in response to inconsistent social information. The participants performed a social impression task inside an fMRI scanner in which they were shown a male face, together with a series of four adjectives that described the depicted person's personality traits, successively presented beneath the image of the face. Participants were asked to rate their impressions of the person at the end of each trial on a scale of 1 to 8 (where 1 is most negative and 8 is most positive). We established two hypothetical models that represented two temporal patterns of voxel activity: Model 1 featured decreasing patterns of activity towards the end of each trial, anchoring impressions to initially presented information, and Model 2 showed increasing patterns of activity toward the end of each trial, where impressions were being adjusted using new and inconsistent information. Our data-driven model fitting analyses showed that the temporal activity patterns of voxels within the ventral anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex, amygdala, and fusiform gyrus fit Model 1 (i.e., they were more involved in anchoring first impressions) better than they did Model 2 (i.e., showing impression adjustment). Conversely, voxel-wise neural activity within dorsal ACC and lateral OFC fit Model 2 better than it did Model 1, as it was more likely to be involved in processing new, inconsistent information and adjusting impressions in response. Our novel approach to model fitting analysis replicated previous impression-related neuroscientific findings, furthering the understanding of neural and temporal dynamics of impression processing, particularly with reference to functionally segmenting each region of interest based on relative involvement in impression anchoring as opposed to adjustment.

Intelligent optimal grey evolutionary algorithm for structural control and analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.365-374
    • /
    • 2024
  • This paper adopts a new approach in which nonlinear vibrations can be controlled using fuzzy controllers by optimal grey evolutionary algorithm. If the fuzzy controller cannot stabilize the systems, then the high frequency is injected into the system to assist the controller, and the system is asymptotically stabilized by adjusting the parameters. This paper uses the GM (grey model) and the neural network prediction model. The structure of the neural network is improved from a single factor, and multiple data inputs are extended to various factors and numerous data inputs. The improved model expands the applicable range of uncontrolled elements and improves the accuracy of controlled prediction, using the model that has been trained and stabilized by multiple learning. The simulation results show that the improved gray neural network model has higher prediction accuracy and reliability than the traditional GM model, improving controlled management and pre-control ability. In the combined prediction, the time series parameters and the predicted values obtained from the GM (1,1) (Grey Model of first order and one variable) are simultaneously used as the input terms of the neural network, considering the influence of the non-equal spacing of the data, which makes the results of the combined gray neural network model more rationalized. By adjusting the model structure and system parameters to simulate and analyze the controlled elements, the corresponding risk change trend graphs and prediction numerical calculation results are obtained, which also realize the effective prediction of controlled elements. According to the controlled warning principle and objective, the fuzzy evaluation method establishes the corresponding early warning response method. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage.

The Study for the Realtime Noise Simulation Integration Model Applied to Traffic Simulation and Spatial Modeling (교통 시뮬레이션과 공간 모델링 기법을 적용한 실시간 소음 시뮬레이션 통합 모델에 대한 연구)

  • Kang, Tae-Wook;Cho, Yoon-Ho;Kim, In-Tai
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.111-119
    • /
    • 2011
  • The noise prediction model, KRON-2006, in South Korea has been developed for obtaining the average noise level. The model is based on an outdoor sound propagation method based on ISO9613 and ASJ Model-1998 and supports the analysis of the linear noise source, such as highway, for obtaining Leq. Because of that, the model can't obtain Lmax, Lmin from the time series noise profile based on traffic at every moment. In order to address this problem, the real time noise prediction model based on traffic simulation using GIS model and algorithm is proposed. It can predict the vehicle point noise level based on vehicle type, speed generated from traffic simulation by using headway and obtain Lmax, Lmin as integrating the noise profile generated from it at every moment. An evalution of the noise prediciton model using field measurements finds good agreement between predicted and measured noise levels at 1m, 8m, 15m from curb of the near side lane.

A Study on Comparison and Application of Numerical Models to Experiments in Discontinuous Rock Mass (불연속성 암반에서의 수치모델 검토 및 시험과의 비교.적용에 대한 연구)

  • 정교철
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • In general, there are various approaches available in literature to model discontinuous rock masses and engineers are often confused which one to use for designing structures in rock masses. Modelling rock masses can be classified mainly into two approaches. One is discrete modelling of intact rock and discontinuities and the other is the equivalent continuum modelling. In this study five models are selected ;(1) Crack tensor model, (2) Equivalent volume defect model, (3) Damage model, (4) Micro - structure model (Parallel model and Series model), and (5) Homogenization model. Most of these models are mainly concerned with how to define additional strain due to discontinuities over the representative elementary volume (REV) and how to relate the stress field of discontinuities to that acting on the REV. The characteristics of these models are clarified by comparing with results of some laboratory tests.

  • PDF

Traffic-Flow Forecasting using ARIMA, Neural Network and Judgment Adjustment (신경망, 시계열 분석 및 판단보정 기법을 이용한 교통량 예측)

  • Jang, Seok-Cheol;Seok, Sang-Mun;Lee, Ju-Sang;Lee, Sang-Uk;An, Byeong-Ha
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.795-797
    • /
    • 2005
  • During the past few years, various traffic-flow forecasting models, i.e. an ARIMA, an ANN, and so on, have been developed to predict more accurate traffic flow. However, these models analyze historical data in an attempt to predict future value of a variable of interest. They make use of the following basic strategy. Past data are analyzed in order to identify a pattern that can be used to describe them. Then this pattern is extrapolated, or extended, into the future in order to make forecasts. This strategy rests on the assumption that the pattern that has been identified will continue into the future. So ARIMA or ANN models with its traditional architecture cannot be expected to give good predictions unless this assumption is valid; The statistical models in particular, the time series models are deficient in the sense that they merely extrapolate past patterns in the data without reflecting the expected irregular and infrequent future events Also forecasting power of a single model is limited to its accurate. In this paper, we compared with an ANN model and ARIMA model and tried to combine an ARIMA model and ANN model for obtaining a better forecasting performance. In addition to combining two models, we also introduced judgmental adjustment technique. Our approach can improve the forecasting power in traffic flow. To validate our model, we have compared the performance with other models. Finally we prove that the proposed model, i.e. ARIMA + ANN + Judgmental Adjustment, is superior to the other model.

  • PDF

A Study on the Repair Parts Inventory Cost Estimation and V-METRIC Application for PBL Contract (PBL 계약을 위한 수리부속 재고비용 예측과 V-METRIC의 활용에 관한 연구)

  • Kim, Yoon Hwa;Lee, Sung Yong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • For the PBL contract, it is necessary for the contracting parties to share information regarding the reasonable inventory-level and the cost of its repair parts for the estimated demand. There are various models which can be used for this purpose. Among them, V-METRIC model is considered to be the most efficient and is most frequently applied. However, this model is usually used for optimizing the inventory level of the repair parts of the system under operation. The model uses a time series forecast model to determine the demand rate, which is a mandatory input factor for the model, based on past field data. However, since the system at the deployment stage has no operational performance record, it is necessary to find another alternative to be used as the demand rate of the model application. This research applies the V-METRIC model to find the optimal inventory level and cost estimation for repairable items to meet the target operational availability, which is a key performance indicator, at the time of the PBL contract for the deployment system. This study uses the calculated value based on the allocated MTBF to the system as the demand rate, which is used as input data for the model. Also, we would like to examine changes in inventory level and cost according to the changes in target operational availability and MTBF allocation.

Development of Model Estimating Fertility Rate for Korea (출산율 예측 모형 개발)

  • Lee, Sam-Sik;Choi, Hyo-Jin
    • Korea journal of population studies
    • /
    • v.35 no.1
    • /
    • pp.77-99
    • /
    • 2012
  • This study aimed at developing a model for estimating fertility rates for Korea under some conditions. The model is expected to provide the basic information for establishing and evaluating the polices in prompt and adequate response to low fertility and population ageing. The model was established on the basis of experiences by some OECD countries in Europe, having experienced the fertility increase trend and being economically well-developed, because Korea has never experienced the steady increase in fertility rate since 1960. This study collected about 20 years' time series data for each of selected countries and applied to the regression model, which is called a 'panel analysis' to take into considerations both cross-sectional and longitudinal aspects of fertility change simultaneously. Simulation of the model for Korea and some panel countries showed a very small difference, less than 0.1, between the estimated rate and the observed rate for each year during 2006~2010. Thus, the model, as established in this study, is evaluated as accurate or well-fitted to a considerable extent.

  • PDF