• Title/Summary/Keyword: sequential pattern mining

Search Result 82, Processing Time 0.023 seconds

Design of Contact Scheduling System(CSS) for Customer Retention (고객유지를 위한 접촉스케줄링시스템의 설계)

  • Lee, Jee-Sik;Cho, You-Jung
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.3
    • /
    • pp.83-101
    • /
    • 2005
  • Customer retention is one of the major issues in life insurance industry, in which competition is increasingly fierce. There are many things for the life insurers to do many things to retain the customers. One of those things is to make sure to keep in touch with all customers. When an insurance-planner resigned, his/her customers must be taken care of by some planner-assistants. This article outlines the design of Contact Scheduling System (CSS) that supports planner-assistants for contacting the customers. Planner-assistants are unable to share the resigned insurance-planner's experience and knowledge regarding the customer relationship management. The CSS developed by employing both Classification And Regression Tree (CART) technique and Sequential Pattern Mining (SPM) technique has a two-stage process. In the first stage, it segments the customers into eight groups by CART model. Then it generates contact scheduling information consisting of contact-purpose, contact-interval and contact-channel, according to the segment's typical contact pattern. Contact-purpose is derived by schedule-driven, event-driven, or business-rule-driven. Schedule-driven contact is determined by SPM model. In the operation of CSS in a realistic situation, it shows a practicality in supporting planner-assistants to keep in touch with the customers efficiently and effectively.

  • PDF

Adapted Sequential Pattern Mining Algorithms for Business Service Identification (비즈니스 서비스 식별을 위한 변형 순차패턴 마이닝 알고리즘)

  • Lee, Jung-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.87-99
    • /
    • 2009
  • The top-down method for SOA delivery is recommended as a best way to take advantage of SOA. The core step of SOA delivery is the step of service modeling including service analysis and design based on ontology. Most enterprises know that the top-down approach is the best but they are hesitant to employ it because it requires them to invest a great deal of time and money without it showing any immediate results, particularly because they use well-defined component based systems. In this paper, we propose a service identification method to use a well-defined components maximally as a bottom-up approach. We assume that user's inputs generates events on a GUI and the approximate business process can be obtained from concatenating the event paths. We first find the core GUIs which have many outgoing event calls and form event paths by concatenating the event calls between the GUIs. Next, we adapt sequential pattern mining algorithms to find the maximal frequent event paths. As an experiment, we obtained business services with various granularity by applying a cohesion metric to extracted frequent event paths.

An Incremental Updating Algorithm of Sequential Patterns (점진적인 순차 패턴 갱신 알고리즘)

  • Kim Hak-Ja;Whang Whan-Kyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.5 s.311
    • /
    • pp.17-28
    • /
    • 2006
  • In this paper, we investigate a problem of updating sequential patterns when new transactions are added to a database. We present an efficient updating algorithm for sequential pattern mining that incrementally updates added transactions by reusing frequent patterns found previously. Our performance study shows that this method outperforms both AprioriAll and PrefixSpan algorithm which updates from scratch, since our method can efficiently utilize reduced candidate sets which result from the incremental updating technique.

Temporal Data Mining Framework (시간 데이타마이닝 프레임워크)

  • Lee, Jun-Uk;Lee, Yong-Jun;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.365-380
    • /
    • 2002
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.

Detection of API(Anomaly Process Instance) Based on Distance for Process Mining (프로세스 마이닝을 위한 거리 기반의 API(Anomaly Process Instance) 탐지법)

  • Jeon, Daeuk;Bae, Hyerim
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.6
    • /
    • pp.540-550
    • /
    • 2015
  • There have been many attempts to find knowledge from data using conventional statistics, data mining, artificial intelligence, machine learning and pattern recognition. In those research areas, knowledge is approached in two ways. Firstly, researchers discover knowledge represented in general features for universal recognition, and secondly, they discover exceptional and distinctive features. In process mining, an instance is sequential information bounded by case ID, known as process instance. Here, an exceptional process instance can cause a problem in the analysis and discovery algorithm. Hence, in this paper we develop a method to detect the knowledge of exceptional and distinctive features when performing process mining. We propose a method for anomaly detection named Distance-based Anomaly Process Instance Detection (DAPID) which utilizes distance between process instances. DAPID contributes to a discovery of distinctive characteristic of process instance. For verifying the suggested methodology, we discovered characteristics of exceptional situations from log data. Additionally, we experiment on real data from a domestic port terminal to demonstrate our proposed methodology.

An Investigation on Expanding Traditional Sequential Analysis Method by Considering the Reversion of Purchase Realization Order (구매의도 생성 순서와 구매실현 순서의 역전 현상을 감안한 확장된 순차분석 방법론)

  • Kim, Minseok;Kim, Namgyu
    • The Journal of Information Systems
    • /
    • v.22 no.3
    • /
    • pp.25-42
    • /
    • 2013
  • Recently various kinds of Information Technology services are created and the quantities of the data flow are increase rapidly. Not only that, but the data patterns that we deal with also slowly becoming diversity. As a result, the demand of discover the meaningful knowledge/information through the various mining analysis such as linkage analysis, sequencing analysis, classification and prediction, has been steadily increasing. However, solving the business problems using data mining analysis does not always concerning, one of the major causes of these limitations is there are some analyzed data can't accurately reflect the real world phenomenon. For example, although the time gap of purchasing the two products is very short, by using the traditional sequencing analysis, the precedence relationship of the two products is clearly reflected. But in the real world, with the very short time interval, the precedence relationship of the two purchases might not be defined. What was worse, the sequence of the purchase intention and the sequence of the purchase realization of the two products might be mutually be reversed. Therefore, in this study, an expanded sequencing analysis methodology has been proposed in order to reflect this situation. In this proposed methodology, the purchases that being made in a very short time interval among the purchase order which might not important will be notice, and the analysis which included the original sequence and reversed sequence will be used to extend the analysis of the data. Also, to some extent a very short time interval can be defined as the time interval, so an experiment were carried out to determine the varying based on the time interval for the actual data.

Discovering Temporal Relation Rules from Temporal Interval Data (시간간격을 고려한 시간관계 규칙 탐사 기법)

  • Lee, Yong-Joon;Seo, Sung-Bo;Ryu, Keun-Ho;Kim, Hye-Kyu
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.301-314
    • /
    • 2001
  • Data mining refers to a set of techniques for discovering implicit and useful knowledge from large database. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering knowledge from temporal database, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treat problems for discovering temporal pattern from data which are stamped with time points and do not consider problems for discovering knowledge from temporal interval data. For example, there are many examples of temporal interval data that it can discover useful knowledge from. These include patient histories, purchaser histories, web log, and so on. Allen introduces relationships between intervals and operators for reasoning about relations between intervals. We present a new data mining technique that can discover temporal relation rules in temporal interval data by using the Allen's theory. In this paper, we present two new algorithms for discovering algorithm for generating temporal relation rules, discovers rules from temporal interval data. This technique can discover more useful knowledge in compared with conventional data mining techniques.

  • PDF

A sequential pattern analysis for dynamic discovery of customers' preference (고객의 동적 선호 탐색을 위한 순차패턴 분석 : (주)더페이스샵 사례)

  • Song, Ki-Ryong;Noh, Soeng-Ho;Lee, Jae-Kwang;Choi, Il-Young;Kim, Jae-Kyeong
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.153-170
    • /
    • 2008
  • Customers' needs change every moment. Profitability of stores can't be increased anymore with an existing standardized chain store management. Accordingly, a personalized store management tool needs through prediction of customers' preference. In this study, we propose a recommending procedure using dynamic customers' preference by analyzing the transaction database. We utilize self-organizing map algorithm and association rule mining which are applied to cluster the chain stores and explore purchase sequence of customers. We demonstrate that the proposed methodology makes an effect on recommendation of products in the market which is characterized by a fast fashion and a short product life cycle.

  • PDF

XML Document Clustering Based on Sequential Pattern (순차패턴에 기반한 XML 문서 클러스터링)

  • Hwang, Jeong-Hee;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1093-1102
    • /
    • 2003
  • As the use of internet is growing, the amount of information is increasing rapidly and XML that is a standard of the web data has the property of flexibility of data representation. Therefore electronic document systems based on web, such as EDMS (Electronic Document Management System), ebXML (e-business extensible Markup Language), have been adopting XML as the method for exchange and standard of documents. So research on the method which can manage and search structural XML documents in an effective wav is required. In this paper we propose the clustering method based on structural similarity among the many XML documents, using typical structures extracted from each document by sequential pattern mining in pre-clustering process. The proposed algorithm improves the accuracy of clustering by computing cost considering cluster cohesion and inter-cluster similarity.

Discovery and Recommendation of User Search Patterns from Web Data (웹 데이터에서의 사용자 탐색 패턴 발견 및 추천)

  • 구흠모;양재영;홍광희;최중민
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.287-296
    • /
    • 2002
  • 웹 사용 마이닝은 데이터마이닝을 바탕으로 사용자의 로그 파일 정보를 이용하여 웹이 이용되는 패턴을 발견한다. 이를 이용하여 웹을 개선하여 사용자들이 보다 빨리 원하는 내용을 검색할 수 있도록 할 수 있으며 시스템 관리자에게는 효율적인 웹 구조를 인한 정보를 제공할 수 있다. 웹 사용 마이닝에서 사용하는 데이터는 성형화되어 있지 않으며 웹 사용 패턴을 분석하는데 방해가 되는 잡음 데이터까지 포함하고 있다. 이것은 기존에 개발된 여러 데이터마이닝 기법을 적용하는데 어려움으로 작용한다. 이러한 어려움을 해결하기 위해 본 논문에서는 새로운 방법을 도입한 SPMiner을 .제안한다. SPMiner는 웹의 구조를 이용하여 로그 파일의 전처리 과정을 줄이며 사용자의 탐색 패턴 분석을 효율적으로 수행 할 수 있는 시스템이다. SPMiner는 WebTree 에이전트를 이용하여 웹 사이트 구조를 분석하여 WebTree를 생성하고 사용자 로그 파일을 분석하여 각 웹 페이지의 사용빈도에 대한 정보를 추출한다. WebTree와 로그 파일에서 추출된 웹 페이지에 대한 정보는 SPMiner에 의해 패턴을 분석할 퍼 이용될 수 있는 형태인 WebTree$^{+}$로 병합된다 WebTree$^{+}$는 패턴 발견을 쉽게 해주며 사용자에게 추천할 정보나 웹 페이지를 능동적으로 추천할 수 있게 만들어 준다.

  • PDF