In this paper, we describe a modified fixed-threshold sequential minimal optimization (FSMO) for 1-slack structural support vector machine (SVM) problems. Because the modified FSMO uses the fact that the formulation of 1-slack structural SVMs has no bias, it breaks down the quadratic programming (QP) problems of 1-slack structural SVMs into a series of smallest QP problems, each involving only one variable. For various test sets, the modified FSMO is as accurate as existing structural SVM implementations (n-slack and 1-slack SVM-struct) but is faster on large data sets.
International journal of advanced smart convergence
/
v.12
no.4
/
pp.202-207
/
2023
In this paper, we discuss the design and implementation of a recommendation platform actually built in the field. We survey deep learning-based recommendation models that are effective in reflecting individual user characteristics. The recently proposed RNN-based sequential recommendation models reflect individual user characteristics well. The recommendation platform we proposed has an architecture that can collect, store, and process big data from a company's commercial services. Our recommendation platform provides service providers with intuitive tools to evaluate and apply timely optimized recommendation models. In the model evaluation we performed, RNN-based sequential recommendation models showed high scores.
Journal of the Korean Society of Marine Environment & Safety
/
v.24
no.3
/
pp.295-301
/
2018
This study compares optimization algorithms for efficient estimations of ship's hydrodynamic coefficients. Two constrained algorithms, the interior point and the sequential quadratic programming, are compared for the estimation. Mathematical optimization is designed to get optimal hydrodynamic coefficients for modelling a ship, and benchmark data are collected from sea trials of a training ship. A calibration for environmental influence and a sensitivity analysis for efficiency are carried out prior to implementing the optimization. The optimization is composed of three steps considering correlation between coefficients and manoeuvre characteristics. Manoeuvre characteristics of simulation results for both sets of optimized coefficients are close to each other, and they are also fit to the benchmark data. However, this similarity interferes with the comparison, and it is supposed that optimization conditions, such as designed variables and constraints, are not sufficient to compare them strictly. An enhanced optimization with additional sea trial measurement data should be carried out in future studies.
The authors used association rules and patterns in sequential of data mining in order to raise the efficiency of engineering changes. The association rule can reduce the number of engineering changes since it can estimate the parts to be changed. The patterns in sequential can perform engineering changes effectively by estimating the parts to be changed from sequence estimation. According to this result, unnecessary engineering changes are eliminated and the number of engineering changes decrease. This method can be used for improving design quality and productivity in company managing engineering changes and related information.
A competitive learning network was proposed as unsupervised training method of remote sensing data, Its performance and computational re¬quirements were compared with conventional clustering techniques such as Se¬quential and K - Means. An airborne remote sensing data set was used to study the performance of these classifiers. The proposed algorithm required a little more computational time than the conventional techniques. However, the perform¬ance of competitive learning network algorithm was found to be slightly more than those of Sequential and K - Means clustering techniques.
The simulation techniques of hydrologic data series have develped for the purposes of the design of water resources system, the optimization of reservoir operation, and the design of flood control of reservoir, etc. While the stochastic models are usually used in most analysis of water resources fields for the generation of data sequences, the indexed sequential modeling (ISM) method based on generation of a series of overlapping short-term flow sequences directly from the historical record has been used for the data generation in the western USA since the early of 1980s. It was reported that the reliable results by ISM were obtained in practical applications. In this study, we generate annual inflow series at a location of Hong Cheon Dam site by using ISM method and autoregressive, order-1 model (AR(1)), and estimate the drought characteristics for the comparison aim between ISM and AR(1).
Journal of the Korean Data and Information Science Society
/
v.20
no.6
/
pp.1009-1014
/
2009
The Internet has changed the daily lives of human being in Korea and elsewhere in the world. It has changed the paradigms of traditional commercial activities and created immense opportunities for new business models. Recently, there has been much attention to the internet shopping mall as a means of commercial transaction. To make internet shopping mall competitive, effective customer satisfaction service should be provided and it is necessary to dynamic analysis method for customers' purchasing pattern. In this paper we apply the sequential analysis to comparison of two kinds of sales through the analysis of customers' purchasing pattern.
The needs for satellite formation flying are gradually increasing to perform the advanced space missions in remote sensing and observation of the space or Earth. Formation flying in low Earth orbit can perform the scientific missions that cannot be realized with a single spacecraft. One of the various techniques of satellite formation flying is the determination of the precise baselines between the satellites within the formation, which has to be in company with the precision validation. In this paper, the baseline of Gravity Recovery and Climate Experiment (GRACE) A and B was determined with the real global positioning system (GPS) measurements of GRACE satellites. And baseline precision was validated with the batch and sequential processing methods using K/Ka-band ranging system (KBR) biased range measurements. Because the proposed sequential method validate the baseline precision, removing the KBR bias with the epoch difference instead of its estimation, the validating data (KBR biased range) are independent of the data validated (GPS-baseline) and this method can be applied to the real-time precision validation. The result of sequential precision validation was 1.5~3.0 mm which is similar to the batch precision validation.
Communications for Statistical Applications and Methods
/
v.23
no.2
/
pp.131-146
/
2016
In research on behavioral studies, significant attention has been paid to the stage-sequential process for longitudinal data. Latent class profile analysis (LCPA) is an useful method to study sequential patterns of the behavioral development by the two-step identification process: identifying a small number of latent classes at each measurement occasion and two or more homogeneous subgroups in which individuals exhibit a similar sequence of latent class membership over time. Maximum likelihood (ML) estimates for LCPA are easily obtained by expectation-maximization (EM) algorithm, and Bayesian inference can be implemented via Markov chain Monte Carlo (MCMC). However, unusual properties in the likelihood of LCPA can cause difficulties in ML and Bayesian inference as well as estimation in small samples. This article describes and addresses erratic problems that involve conventional ML and Bayesian estimates for LCPA with small samples. We argue that these problems can be alleviated with a small amount of prior input. This study evaluates the performance of likelihood and MCMC-based estimates with the proposed prior in drawing inference over repeated sampling. Our simulation shows that estimates from the proposed methods perform better than those from the conventional ML and Bayesian method.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.9
/
pp.827-832
/
2001
In this paper, we propose a sequentially optimization method for fuzzy inference system using fuzzy equalization and linguistic hedge. The fuzzy equalization does not require the usual learning step for generating fuzy rules. However, it is too sensitive for the given input-output data set. So, we adopt a sequential scheme which sequentially optimizes the fuzzy inference system. Here, the parameters of fuzzy membership function obtained from the fuzzy equalization are optimized by the genetic algorithm, and then they are also modified to increase the performance index using the linguistic hedge. Finally, we applied it to rice taste data and got better results than previous ones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.