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In this paper, we describe a modified fixed-threshold 
sequential minimal optimization (FSMO) for 1-slack 
structural support vector machine (SVM) problems. 
Because the modified FSMO uses the fact that the 
formulation of 1-slack structural SVMs has no bias, it 
breaks down the quadratic programming (QP) problems 
of 1-slack structural SVMs into a series of smallest QP 
problems, each involving only one variable. For various 
test sets, the modified FSMO is as accurate as existing 
structural SVM implementations (n-slack and 1-slack 
SVM-struct) but is faster on large data sets. 
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I. Introduction 

Large-margin methods for structured output prediction, such 
as maximum-margin Markov networks [1] and structural 
support vector machines (SVMs) [2], have recently received 
substantial interest in natural language processing [3], 
bioinformatics [4], and information retrieval [5]. 

For structural SVMs, Tsochantaridis presented a cutting-
plane algorithm that takes O(1/ε2) iterations to reach a desired 
precision ε [2]. For training of a structural SVM, Tsochantaridis 
used a standard SVM solver, namely, SVM-light, for solving 
the dual form of a structural SVM (SVM-struct), despite the 
fact that a structural SVM has no bias. That is, the bias b is 
fixed at zero [2]. Sequential minimal optimization (SMO) [6] 
has also been applied to large-margin methods [1], [3], [7]. 
Collins provided an exponentiated gradient method to the 
structured output problem [8]. Subgradient methods have also 
been proposed to solve the optimization problem in maximum-
margin structured prediction [9]. While not yet explored for 
structured prediction, the Pegasos algorithm has shown 
promising performance for binary classification SVMs [10]. 
Lee and Jang proposed a fixed-threshold sequential minimal 
optimization (FSMO) algorithm for a structural SVM, and 
showed that the algorithm is much faster than SVM-struct and 
LIBSVM (Library for Support Vector Machines) [11]. 

Recently, Teo suggested a bundle method [12], and Joachims 
proposed a 1-slack formulation of structural SVMs which is 
very close to the bundle method [13]. These methods can be 
viewed as extensions of the method given by Joachims [14] for 
binary linear SVMs. The 1-slack algorithm is substantially 
faster than existing methods such as SMO and SVM-light. The 
convergence rate of the 1-slack algorithm is O(1/ε). 

In this paper, we describe a modified FSMO algorithm for  
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1-slack structural SVMs. The modified FSMO uses the fact 
that the formulation of 1-slack structural SVMs has no bias and 
no linear equality constraint of binary classification SVMs. 
Therefore, the modified FSMO breaks the quadratic 
programming (QP) of a structural SVM into a series of 
smallest QPs, each involving only one variable. By involving 
only one variable, the modified FSMO is advantageous in that 
each QP subproblem does not require a working set selection 
when support vectors are unbounded. 

Our main contributions are the following: 
• We introduce a modified FSMO algorithm for 1-slack 

structural SVMs. We show that for the 1-slack structural 
SVMs, replacing SVM-light with the modified FSMO 
algorithm shows much faster training results. 

• We provide a convergence proof of the modified FSMO 
algorithm for 1-slack structural SVMs. 

For comparison, we extend the Pegasos algorithm for 
structured prediction. 

The rest of this paper is organized as follows. Section II 
describes the 1-slack structural SVM. Section III describes our 
proposed modified FSMO algorithm for the 1-slack structural 
SVM. In section IV, we give an overview of related work. 
Section V provides the experimental setup and results. The 
final section gives some concluding remarks. 

II. 1-Slack Structural SVM 

Structured classification is the problem of predicting y from x 
in the case where y has a meaningful internal structure. For 
example, x might be a word string and y might be a sequence 
of part of speech labels, or y might be a parse tree of x. The 
approach is to learn the discriminant function :f X Y R× →  
over <input, output> pairs from which we can derive a 
prediction by maximizing f over the response variable for a 
specific given input x. Throughout this paper, we assume f to be 
linear in some combined feature representation of inputs and 
outputs ),( yxΨ , ).,();,( yxyxf T Ψ= ww  

The specific form of ),( yxΨ  depends on the nature of the 
problem. An example of part of speech tagging is shown in Fig. 1. 

To deal with problems in which |Y| is very large, 
Tsochantaridis proposed two approaches, namely, slack 
rescaling and margin rescaling [2]. In the case of margin 
rescaling, which we consider in this paper, training a structural 
SVM amounts to solving the following quadratic program. For 
convenience, we define ( , ) ( , ) ( , ),i i i i ix y x y x yδΨ ≡ Ψ − Ψ  
where (xi,yi) is the training data: 
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Fig. 1. Example of part of speech tagging model. 
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This formulation is referred to as the “n-slack” structural 
SVM, since it assigns a different slack variable to each of the n 
training examples. Tsochantaridis presented a cutting-plane 
algorithm that requires O(n/ε2) constraints for any desired 
precision ε [2]. 

Joachims proposed an alternative formulation of the SVM 
optimization problem to predict structured outputs [13]. The 
key idea is to replace the n cutting-plane models of the hinge 
loss with a single cutting plane model for the sum of the hinge 
losses. Since there is only a single-slack variable, the new 
formulation is referred to as “1-slack” structural SVMs. 
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(2) 
While 1-slack formulations have |Y|n constraints, one for 

each possible combination of labels 1ˆ ˆ( , , ) n
ny y Υ∈ , they 

have only one slack variable ξ that is shared across all 
constraints. Interestingly, the objective functions of the n-slack 
and 1-slack formulations are equal [13].  

Joachims showed that the dual form of the 1-slack 
formulation has a solution that is extremely sparse with the 
number of non-zero dual variables independent of the number 
of training examples and that the convergence rate is O(1/ε) 
[13]. To find this solution, Joachims proposed 1-slack cutting 
plane algorithms. The pseudocode of the algorithm is given in 
algorithm 1. The algorithm iteratively constructs a working set 
S of constraints. In each iteration, the algorithm computes the 
solution over the current S by using SVM-light (line 4), finds 
the “most violated” constraint (lines 5 to 7), and adds it to the 
working set S (line 8). The algorithm stops once no constraint 
can be found that is violated by more than the desired precision 
ε (line 9). 

III. Modified FSMO for 1-Slack Structural SVM 

In this section, we describe the modified FSMO algorithm 
for solving the 1-slack structural SVM. Instead of SVM-light,  
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Algorithm 1. 1-slack cutting plane algorithm [13] 
1: Input: (x1,y1),…, (xn,yn), C, ε 
2: S Ø 
3: repeat 

4: 
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5:    for i=1,…,n do 
6:      ˆˆ ˆ ˆmax { ( , ) ( , )}T

i i i iy Yy y y x y∈← Δ + Ψw  

7:    end for 
8:    1ˆ ˆ{( , , )}nS S y y← ∪  

9: until 
1 1
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10: return (w,ξ) 
 
the modified FSMO is used to solve the dual problem of the  
1-slack structural SVM in the 1-slack cutting plane algorithm 
(line 4 in algorithm 1). 

We denote the vectors as follows: 

1

1

1

ˆ ˆ ˆ( , , ) ,  
1ˆ ˆ( ) ( , ),  

1ˆ ˆ( ) ( , ).

n
n

n

i i
i

n

i i i
i

y y Υ

y y
n

x y
n

δ δ

=

=

= ∈

Δ = Δ

Ψ = Ψ

∑

∑

y

y

y

 

We can solve the optimization problem of 1-slack structural 
SVMs in (2) using standard Lagrangian duality techniques: 
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By substituting (4) and (5) into (3), we obtain the following 
dual form, which is a QP problem where the objective function 
D is solely dependent on a set of Lagrangian multipliers: 
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The extremum of the object function D is at 
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Let new
ˆ ˆ sα α= +y y  

and new ˆ( )sδ= + Ψw w y . We can then 
obtain the following equations from (7): 
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Because 1-slack structural SVMs have no bias, that is, the 
bias b is fixed at zero, in (2) and (3), (6) has no linear equality 
constraint of binary classification SVMs. Therefore, the 
modified FSMO can optimize only one Lagrange multiplier at 
a time when support vectors are unbounded, that is,  

ˆˆ nΥ
Cα

∈
<∑ yy

. While decomposition methods such as SMO  

[6], [15] and SVM-light [16] choose the working set (for 
example, a maximal violating pair) and optimize it, our method 
sequentially traverses through the examples without working 
set selection steps that take time O(|S|). For this case, our 
method is more efficient than general decomposition methods. 

However, when support vectors are bounded, that is,  
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In this case, the modified FSMO uses the working set selection 
using second-order information (WSS2) of a practical 
implementation of SMO [15]. The algorithm chooses ˆαy in S to 
maximize ˆ ˆ ˆ( ) ( ) ( )Tg δ= Δ − Ψy y w y , and another ˆ ' 0α >y  to 
minimize 2 2ˆ ˆ ˆ ˆ( ( ) ( ')) /|| ( ) ( ')|| .g g δ δ− − Ψ − Ψy y y y Also, ˆαy and 
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A pseudocode of the modified FSMO is depicted in 
algorithm 2. The algorithm is called the 1-slack cutting plane 
algorithm (line 4 in algorithm 1) and is used to solve the dual 
problem over the working set S. Iterating through the constraint 

1ˆ ˆ ˆ( , , )ny y=y  in the working set S, the algorithm updates  
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Algorithm 2. Modified FSMO algorithm for a 1-slack structural 
SVM. The algorithm is called the 1-slack cutting plane algorithm 
(line 4 in algorithm 1) and is used to solve the dual problem over the 
working set S. 

1: Input: (x1,y1),…, (xn,yn), S, Sα , C, ε 

2: repeat 
3:    if ˆˆ nΥ

Cα
∈

<∑ yy
 do  /* unbounded SVs: FSMO */ 

4:       for 1ˆ ˆ ˆ( , , )ny y S= ∈y  do 

5:          if ˆˆ ˆ{ ( ) ( ) ,  }T Cδ ε αΔ − Ψ > <yy w y  or  
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6:             calculate s and sclipped  
7:             new clipped
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8:          end if 
9:       end for 

10:    else                /* bounded SVs: SMO */ 
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13:       if ˆ ˆ( ) ( ')g g ε− >y y  do 
14:          calculate s2 and s2

clipped  
15:          new clipped new clipped

ˆ ˆ ˆ ˆ2 2' ',   s sα α α α= + = −y y y y  

16:       end if 
17:    end if 
18: until no ˆαy  has changed during iteration 

 
individual Lagrange multipliers (that is, ŷα ) and w by using (9) 
and (10) when support vectors are unbounded (lines 4 to 9). 
When support vectors are bounded, the algorithm chooses two 
Lagrange multipliers by using the working set selection 
algorithm of SMO and updates two Lagrange multipliers by 
using (11) and (12). The algorithm stops if no ŷα  has 
changed during iteration. 

1. Convergence of the Modified FSMO Algorithm 

Let us now discuss the convergence of algorithm 2. The core 
idea is to show that the improvement of the dual objective in 
(6), 1( ) ( )k kD Dα α+ − , can be lower bounded by a positive 
constant [17]. We will prove that there exists 0σ >  such that 
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First, we assume that support vectors are unbounded. Let the 
parametric change in α be given by α(t): 
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Let t* denote the unconstrained minimum of D, that is, 
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Then, by (15) through (17), 
2 2 2

22 2 22 1

(0) (0)( ) (0)
(0) 2 (0)

ˆ( )(0) (0)       .
2 (0) 2 2

k k

D DD t D
D D

D D t
D

γγ

δγ α α+

′ ′−
− = +

′′ ′′

Ψ′ ′′
≥ − = − = −

′′
y  

(18) 
In a case in which support vectors are bounded, we can obtain 
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In both cases, {αk} converges to some α  [18]. 
Since 2 2ˆ ˆ( ) ( ) ( ) / 2δ δ δΨ ≥ Ψ − Ψy y y  and algorithm 2  

does not require working set selection algorithms that take time 
O(|S|) when support vectors are unbounded, algorithm 2 
converges faster than general SMO-type decomposition 
methods such as SVM-light. 

IV. Related Works 

We now compare our method with other methods. Platt 
briefly introduced a fixed-threshold SMO (FSMO) for a fixed-
threshold SVM where the bias b is fixed at zero but did not 
apply it to structural SVMs [6]. 

The 1-slack cutting plane method of Joachims [13] and the 
bundle method of Teo [12] are given for the general setting of 
SVMs with structured outputs, but they use a standard SVM 
solver (SVM-light) to solve the dual form of structural SVMs, 
despite the fact that a structural SVM has no bias, that is, the 
bias b is fixed at zero. To speed up the convergence of the 
cutting plane method, Franc and Sonnenburg proposed a new 
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method called the optimized cutting plane algorithm (OCAS) 
[19]. Unlike standard cutting plane methods, OCAS aims at 
simultaneously optimizing the master and reducing the 
problem’s objective functions in (1) and (2) using a line-search. 
It will be interesting to apply OCAS to improve the speed of 
the 1-slack cutting plane algorithm (algorithm 1) in our work. 

Keerthi presented sequential descent methods (SDM) for the 
Crammer-Singer and Weston-Watkins multiclass linear SVM 
formulations [20]. Like our method, their method updates the 
dual variables associated with one example at a time. However, 
they did not apply SDM to a structural SVM. Their method is 
not easily extendable to a structural SVM because the QP 
subproblem associated with each example does not have a 
simple form such as those in multiclass SVM formulations, and 
some care is needed to solve this subproblem efficiently [20]. 

The exponentiated gradient (EG) method [8] also applies to 
structured output problems. The EG method also updates the 
dual variables associated with one example at a time, but the 
selection of examples is done in an online mode where i is 
picked randomly each time. 

Stochastic subgradient descent methods were proposed for 
structured output problems [9]. The Pegasos algorithm showed 
promising performance for binary classification SVMs [10]; 
however, this algorithm lacks a good stopping criterion.     

For comparison, we extend the Pegasos algorithm for 
structured prediction (Pegasos-struct). We replace the objective 
of Pegasos with an approximate objective function of n-slack 
structural SVMs, 
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The parameter k is the number of examples used for calculating 
subgradients, and At is the subset of a training set S. The 
subgradient of f(w; At) is 
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In the previous equation, At
+ is the set of examples for which w 

suffers a non-zero loss. A pseudocode of the modified Pegasos 
is given in algorithm 3. 

V. Experiments 

We implemented 1-slack structural SVMs using a modified 
FSMO in C++. For comparison, we ran an n-slack FSMO [11]  

Algorithm 3. Modified Pegasos algorithm (Pegasos-struct) for n-
slack structural SVMs. 

1: Input: S, λ, T, k 
2: Initialize: Choose w1 s.t. 1 1 λ≤w  

3: for t=1,2,…,T do 
4:    Choose tA S⊆ , where tA k=  
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9: end for 
10: Output: wT+1 

 
and an n-slack and 1-slack SVM-struct that uses SVM-light for 
solving QP problems [13]. We also implemented Pegasos-
struct for the n-slack structural SVM by modifying the Pegasos 
algorithm [10] and compared it to other structural SVM 
algorithms. 

For all structural SVMs, a linear kernel was used. 
Regularization constant C from {10, 100, 1000, 10000} was 
chosen by optimization of the test set for all experiments. As 
the stopping condition precision, we set ε = 0.01 for multiclass 
classification tasks and ε = 0.1 for sequence labeling tasks.  
For Pegasos-struct, the parameters λ and k are used as λ=1/C1) 
and k=1, respectively. We used the stopping condition 

11 ( ) ( ) 0.01t tf f+− ≤w w for Pegasos-struct. The experiments 
were performed on a 2.5 GHz Intel Core2 Quad CPU machine 
using Windows XP. The following datasets were used for 
various experiments: MNIST [21], NEWS20 [22], CoNLL-2000 
 

Table 1. Data sets used in the experiments. 

Data set Training size Test size Class Feature Parameters

MNIST 60,000 10,000 10 780
C=1000, 
ε =0.01 

NEWS20 15,935 3,993 20 62,061
C=100, 
ε =0.01 

CoNLL-2000 
chunking 211,727 47,377 22 387,875

C=1000, 
ε =0.1 

Korean 
spacing 987,869 329,219 2 228,260

C=1000, 
ε =0.1 

 

                                                               
1) For the regularization parameter C and λ, we use the following relation: λ=1/C. 
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Table 2. Training time and performance of data sets. 

Data set Algorithm 
Training 
time (s) F1 (%)

1-slack FSMO 152 92.47 

n-slack FSMO 286 92.50 

Pegasos-struct 34 91.88 

1-slack SVM-struct 321 92.39 

MNIST 

n-slack SVM-struct 5,797 92.37 

1-slack FSMO 41 84.62 

n-slack FSMO 81 84.52 

Pegasos-struct 11 84.40 

1-slack SVM-struct 69 84.55 

NEWS20 

n-slack SVM-struct 3,084 84.57 

1-slack FSMO 679 93.75 

n-slack FSMO 1,449 93.80 

Pegasos-struct 67 93.69 

1-slack SVM-struct 1,189 93.77 

CoNLL-2000 
chunking 

n-slack SVM-struct 30,184 93.77 

1-slack FSMO 771 97.04 

n-slack FSMO 1,662 97.01 

Pegasos-struct 50 96.63 

1-slack SVM-struct 2,005 97.05 

Korean 
spacing 

n-slack SVM-struct 118,492 97.04 

 

[23], and Korean spacing data set [24]. For NEWS20, MNIST, 
and CoNLL-2000, we used the standard train-test split. For 
training of Korean spacing, we used about 1.3% of the 21st 
Century Sejong Project’s raw corpus.2) For evaluation of 
Korean spacing, we used the ETRI POS tagged corpus [24]. 
Table 1 summarizes the characteristics of the data sets and 
parameters for structural SVMs. 

Table 2 shows the training time and test set performance on 
all data sets. The modified FSMO for the 1-slack structural 
SVM (1-slack FSMO) outperforms n-slack SVM-struct,    
1-slack SVM-struct, and n-slack FSMO on all data sets in 
terms of training time while obtaining a comparable 
performance of the test set. Pegasos-struct is fast, but it fails to 
achieve a precise solution on the Korean spacing data set. 

Figures 2 through 5 show log-log plots of how training times 
increase with the size of the training set on the MNIST data set 
(multiclass classification task), NEWS20 data set (multiclass 
classification task), CoNLL-2000 chunking data set (sequence 
labeling task), and Korean spacing data set (sequence labeling 
task), respectively. The lines in a log-log plot correspond to  
                                                               
2) http://www.sejong.or.kr/eindex.php 

 

Fig. 2. Training times of the MNIST data set. 
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Fig. 3. Training times of the NEWS20 data set. 
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polynomial growth O(nd), where d corresponds to the slope of 
the line. The proposed method (1-slack FSMO) is faster than  
n-slack SVM-struct, 1-slack SVM-struct, and n-slack FSMO 
on all data sets. Pegasos-struct is fast on large training set sizes, 
but it often fails to achieve a precise solution. 

Figures 6 through 9 show the primal objective values and 
dual objective values on the MNIST data set, the NEWS20 
data set, CoNLL-2000 data set, and Korean spacing data    
set, respectively. The proposed method (1-slack FSMO) 
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Fig. 4. Training times of the CoNLL-2000 data set. 
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Fig. 5. Training times of the Korean spacing data set. 
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consistently outperforms 1-slack SVM-struct on all data sets in 
terms of training time while obtaining a comparable objective 
value. Pegasos-struct is fast in the beginning, but it often fails to 
achieve a precise solution. 

VI. Conclusion 

This paper presents a modified FSMO for 1-slack structural  

 

Fig. 6. Objective values of the MNIST data set. 
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Fig. 7. Objective values of the NEWS20 data set. 
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SVMs. The modified FSMO is conceptually simple, easy to 
implement, and faster than the standard SVM training 
algorithms for 1-slack structural SVMs. For various 
experiments, the proposed method is faster than n-slack SVM-
struct, 1-slack SVM-struct, and n-slack FSMO without 
decreasing the performance. Pegasos-struct is fast on large 
training set sizes, but it fails to achieve a precise solution on 
some data sets. 
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Fig. 8. Objective values of the CoNLL-2000 data set. 
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Fig. 9. Objective values of the Korean spacing data set. 
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