• Title/Summary/Keyword: sentimental analysis

Search Result 93, Processing Time 0.023 seconds

Developing a Sentiment Analysing and Tagging System (감성 분석 및 감성 정보 부착 시스템 구현)

  • Lee, Hyun Gyu;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.8
    • /
    • pp.377-384
    • /
    • 2016
  • Our goal is to build the system which collects tweets from Twitter, analyzes the sentiment of each tweet, and helps users build a sentiment tagged corpus semi-automatically. After collecting tweets with the Twitter API, we analyzes the sentiments of them with a sentiment dictionary. With the proposed system, users can verify the results of the system and can insert new sentimental words or dependency relations where sentiment information exist. Sentiment information is tagged with the JSON structure which is useful for building or accessing the corpus. With a test set, the system shows about 76% on the accuracy in analysing the sentiments of sentences as positive, neutral, or negative.

Investigating Factors of Higher Education on Job Satisfaction, Globalization, and Hosting Country

  • Cho, Yooncheong
    • The Journal of Industrial Distribution & Business
    • /
    • v.12 no.2
    • /
    • pp.7-17
    • /
    • 2021
  • Purpose: Previous studies have rarely examined the role of higher education for human capital development in the case of Korea. The purpose of this study is to investigate effects of higher education for international students in globalized environment on job satisfaction, globalization, and hosting country. Research questions include the following: i) how do application and improvement on work, performance, self-confidence, and use of network affect job satisfaction; ii) how do leadership, policy improvement, public diplomacy, social responsibility and global competence affect globalization?; iii) how do affective, cognitive, and behavioral components affect attitude of hosting country? Research design, data, and methodology: Online survey and interviews were conducted. For quantitative research, this study applied factor and structural equational modeling, while for qualitative research, this study applied cognitive mapping and sentimental analysis. Results: This study found that most of proposed effects showed significant. The results showed consistent for quantitative and qualitative researches. Conclusions: The results implied that higher education in global environment plays a key role to enhance job satisfaction, globalization, and attitude toward the hosting country and contributes to foster international relations significantly. The results also implied that human capital development in globalized environment helps improve global network and public diplomacy.

Deforestation Patterns Analysis of the Baekdudaegan Mountain Range (백두대간지역의 산림훼손경향 분석)

  • Lee, Dong-Kun;Song, Won-Kyong;Jeon, Seong-Woo;Sung, Hyun-Chan;Son, Dong-Yeob
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.4
    • /
    • pp.41-53
    • /
    • 2007
  • The Baekdudaegan Mountain Range is a backbone of the Korean Peninsula which carries special spiritual and sentimental signatures for Koreans as well as significant ecological values for diverse organisms. However, in spite of importance of this region, the forests of Baekdudaegan have been damaged in a variety of human activities by being used as highland vegetable grower, lumber region, grass land, and bare land, and are still undergoing destruction. The existing researches had determined the details of the damage through on-site and recent observations. Such methods cannot provide quantitative and integrated analysis therefore could not be utilized as objective data for the ecological conservation of Baekdudaegan forests. The goal of this study is to quantitatively analyze the forest damage in the Baekdudaegan preservation region through land cover categorization and change detection techniques by using satellite images, which are 1980s, and 1990s Landsat TM, and 2000s Landsat ETM+. The analysis was executed by detecting land cover changed areas from forest to others and analyzing changed areas' spatial patterns. Through the change detection analysis based on land cover classification, we found out that the deforested areas were approximately three times larger after the 1990s than from the 1980s to the 1990s. These areas were related to various topographical and spatial elements, altitude, slope, the distance form road, and water system, etc. This study has the significance as quantitative and integrated analysis about the Baekdudaegan preservation region since 1980s. These results could actually be utilized as basic data for forest conservation policies and the management of the Baekdudaegan preservation region.

The Response of Domestic Virtual Influencer'S Instagram Audience (국내 버츄얼 인플루언서의 인스타그램 수용자 반응)

  • Han, Ki-Hyang
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.471-483
    • /
    • 2021
  • The purpose of this study is to find out audience' response of virtual influencer at the starting line of virtual influencer marketing. Therefore, posts, comments, number of likes, and video reviews were collected from Instagram of virtual influencers active in Korea. Python 3.7 and Textom were used for data collection and analysis. Sentimental analysis showed that the rate of positivity was higher than the rate of negativity and neutrality. The appearance of virtual influencer was found to be a major factor in both positive and negative. Consumers' interest in virtual influencer could be inferred from the neutral sensibility. This study is meaningful in that it presented data to help establish strategies for virtual influencer marketing by examining consumer reactions to virtual influencer and identifying factors of positive and negative emotions toward virtual influencer.

Building a Korean Sentiment Lexicon Using Collective Intelligence (집단지성을 이용한 한글 감성어 사전 구축)

  • An, Jungkook;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.49-67
    • /
    • 2015
  • Recently, emerging the notion of big data and social media has led us to enter data's big bang. Social networking services are widely used by people around the world, and they have become a part of major communication tools for all ages. Over the last decade, as online social networking sites become increasingly popular, companies tend to focus on advanced social media analysis for their marketing strategies. In addition to social media analysis, companies are mainly concerned about propagating of negative opinions on social networking sites such as Facebook and Twitter, as well as e-commerce sites. The effect of online word of mouth (WOM) such as product rating, product review, and product recommendations is very influential, and negative opinions have significant impact on product sales. This trend has increased researchers' attention to a natural language processing, such as a sentiment analysis. A sentiment analysis, also refers to as an opinion mining, is a process of identifying the polarity of subjective information and has been applied to various research and practical fields. However, there are obstacles lies when Korean language (Hangul) is used in a natural language processing because it is an agglutinative language with rich morphology pose problems. Therefore, there is a lack of Korean natural language processing resources such as a sentiment lexicon, and this has resulted in significant limitations for researchers and practitioners who are considering sentiment analysis. Our study builds a Korean sentiment lexicon with collective intelligence, and provides API (Application Programming Interface) service to open and share a sentiment lexicon data with the public (www.openhangul.com). For the pre-processing, we have created a Korean lexicon database with over 517,178 words and classified them into sentiment and non-sentiment words. In order to classify them, we first identified stop words which often quite likely to play a negative role in sentiment analysis and excluded them from our sentiment scoring. In general, sentiment words are nouns, adjectives, verbs, adverbs as they have sentimental expressions such as positive, neutral, and negative. On the other hands, non-sentiment words are interjection, determiner, numeral, postposition, etc. as they generally have no sentimental expressions. To build a reliable sentiment lexicon, we have adopted a concept of collective intelligence as a model for crowdsourcing. In addition, a concept of folksonomy has been implemented in the process of taxonomy to help collective intelligence. In order to make up for an inherent weakness of folksonomy, we have adopted a majority rule by building a voting system. Participants, as voters were offered three voting options to choose from positivity, negativity, and neutrality, and the voting have been conducted on one of the largest social networking sites for college students in Korea. More than 35,000 votes have been made by college students in Korea, and we keep this voting system open by maintaining the project as a perpetual study. Besides, any change in the sentiment score of words can be an important observation because it enables us to keep track of temporal changes in Korean language as a natural language. Lastly, our study offers a RESTful, JSON based API service through a web platform to make easier support for users such as researchers, companies, and developers. Finally, our study makes important contributions to both research and practice. In terms of research, our Korean sentiment lexicon plays an important role as a resource for Korean natural language processing. In terms of practice, practitioners such as managers and marketers can implement sentiment analysis effectively by using Korean sentiment lexicon we built. Moreover, our study sheds new light on the value of folksonomy by combining collective intelligence, and we also expect to give a new direction and a new start to the development of Korean natural language processing.

Analysis and Recognition of Depressive Emotion through NLP and Machine Learning (자연어처리와 기계학습을 통한 우울 감정 분석과 인식)

  • Kim, Kyuri;Moon, Jihyun;Oh, Uran
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.449-454
    • /
    • 2020
  • This paper proposes a machine learning-based emotion analysis system that detects a user's depression through their SNS posts. We first made a list of keywords related to depression in Korean, then used these to create a training data by crawling Twitter data - 1,297 positive and 1,032 negative tweets in total. Lastly, to identify the best machine learning model for text-based depression detection purposes, we compared RNN, LSTM, and GRU in terms of performance. Our experiment results verified that the GRU model had the accuracy of 92.2%, which is 2~4% higher than other models. We expect that the finding of this paper can be used to prevent depression by analyzing the users' SNS posts.

Development of Elementary School Web Based Art Appreciation System for Enhancing Analysis Appreciation (분석감상능력 신장을 위한 초등학교 웹 기반 미술감상 시스템 개발)

  • Kim, Jeong-Rang;Lim, Hyun-Jung
    • Journal of The Korean Association of Information Education
    • /
    • v.9 no.2
    • /
    • pp.221-228
    • /
    • 2005
  • The art appreciation education is emphasized to develope independent thought and upright value decision in the flood of various image medium. A experience of beauty and a express part related with the sentimental field is focused on directing in the seventh arts curriculum, too. Although the art appreciation education is emphasized, just expressive and functional art texture is still taught in the education spot up to now. Also a appreciative activity is limited simply to describe own feeling intuitionally ; time shortage, difficulty of analysis product, difficulty of guiding appreciation. In this paper I refer that analyze figurative factors of a art product, modify it by applying other program, compare with it and then I develope web base art appreciation system and apply it. As a result I get educational effect. When checking line, form, light and darkness, color, feeling, space and composition of external some factors in a product, formative sense and analytical appreciation is improved.

  • PDF

Identifying Factors Affecting Helpfulness of Online Reviews: The Moderating Role of Product Price (제품 가격에 따른 온라인 리뷰 유익성 결정 요인에 관한 연구)

  • Baek, Hyun-Mi;Ahn, Joong-Ho;Ha, Sang-Wook
    • The Journal of Society for e-Business Studies
    • /
    • v.16 no.3
    • /
    • pp.93-112
    • /
    • 2011
  • For the success of an online retail market, it is important to allow consumers to get more helpful reviews by figuring out the factors determining the helpfulness of online reviews. On the basis of elaboration likelihood model, this study analyzes which factors determine the helpfulness of reviews and how the factors affecting the helpfulness of an online consumer review differ for product price. For this study, 75,226 online consumer reviews were collected from Amazon.com. Furthermore, additional information on review messages was also gathered by carrying out a content analysis on the review messages. This study shows that both of peripheral cues such as review rating and reviewer's credibility and central cues such as word count of review message and the proportion of negative words influence the helpfulness of review. In addition, the result of this study reveals that each consumer focuses on different information sources of reviews depending on the product price.

Research on Designing Korean Emotional Dictionary using Intelligent Natural Language Crawling System in SNS (SNS대상의 지능형 자연어 수집, 처리 시스템 구현을 통한 한국형 감성사전 구축에 관한 연구)

  • Lee, Jong-Hwa
    • The Journal of Information Systems
    • /
    • v.29 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • Purpose The research was studied the hierarchical Hangul emotion index by organizing all the emotions which SNS users are thinking. As a preliminary study by the researcher, the English-based Plutchick (1980)'s emotional standard was reinterpreted in Korean, and a hashtag with implicit meaning on SNS was studied. To build a multidimensional emotion dictionary and classify three-dimensional emotions, an emotion seed was selected for the composition of seven emotion sets, and an emotion word dictionary was constructed by collecting SNS hashtags derived from each emotion seed. We also want to explore the priority of each Hangul emotion index. Design/methodology/approach In the process of transforming the matrix through the vector process of words constituting the sentence, weights were extracted using TF-IDF (Term Frequency Inverse Document Frequency), and the dimension reduction technique of the matrix in the emotion set was NMF (Nonnegative Matrix Factorization) algorithm. The emotional dimension was solved by using the characteristic value of the emotional word. The cosine distance algorithm was used to measure the distance between vectors by measuring the similarity of emotion words in the emotion set. Findings Customer needs analysis is a force to read changes in emotions, and Korean emotion word research is the customer's needs. In addition, the ranking of the emotion words within the emotion set will be a special criterion for reading the depth of the emotion. The sentiment index study of this research believes that by providing companies with effective information for emotional marketing, new business opportunities will be expanded and valued. In addition, if the emotion dictionary is eventually connected to the emotional DNA of the product, it will be possible to define the "emotional DNA", which is a set of emotions that the product should have.

Exploring the Feature Selection Method for Effective Opinion Mining: Emphasis on Particle Swarm Optimization Algorithms

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.41-50
    • /
    • 2020
  • Sentimental analysis begins with the search for words that determine the sentimentality inherent in data. Managers can understand market sentimentality by analyzing a number of relevant sentiment words which consumers usually tend to use. In this study, we propose exploring performance of feature selection methods embedded with Particle Swarm Optimization Multi Objectives Evolutionary Algorithms. The performance of the feature selection methods was benchmarked with machine learning classifiers such as Decision Tree, Naive Bayesian Network, Support Vector Machine, Random Forest, Bagging, Random Subspace, and Rotation Forest. Our empirical results of opinion mining revealed that the number of features was significantly reduced and the performance was not hurt. In specific, the Support Vector Machine showed the highest accuracy. Random subspace produced the best AUC results.