• Title/Summary/Keyword: sentimental analysis

Search Result 93, Processing Time 0.023 seconds

Relationship Analysis between the Box Office Performance and Sentimental Words in Movie Review (영화의 흥행 성과와 리뷰 감정어휘와의 관계 분석)

  • Mun, Seong Min;Ha, Hyo Ji;Lee, Kyung Won
    • Design Convergence Study
    • /
    • v.14 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • This study aims to understand distribution of the sentimental words on each genre and find relationship between box office performance and sentimental words in movie review using 673 movies that have more than 1,000 reviews. For the analysis, crawling movie reviews and made data was composed movie genre, movie name, sales, attendance, screen, normal attendance, 7 sentimental words. For analysis results, we used correlation analysis and Parallel coordinates. As a results, First, the highest box office value of the genre is comedy and the lowest box office value of the genre is horror through analyze box office on each genre. Secondly, Movie genre of fantasy feel a lot of boring emotion and Movie genre of SF feel a lot of anger emotion even if 'Happy' and 'Surprise' have highest sentiment value on every genre. Third, We found 'Anger' increase sentimental value when 'Disgust' increase sentimental value and 'Surprise' decrease sentimental value when 'Happy' increase sentimental value through analyze correlation relationship between sentimental words using total data. Fourth, We found 'Happy' have linear relationship between box office and 'Fear' have non-linear relationship between box office through analyze sentimental words according to box office performance.

Developing Sentimental Analysis System Based on Various Optimizer

  • Eom, Seong Hoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.100-106
    • /
    • 2021
  • Over the past few decades, natural language processing research has not made much. However, the widespread use of deep learning and neural networks attracted attention for the application of neural networks in natural language processing. Sentiment analysis is one of the challenges of natural language processing. Emotions are things that a person thinks and feels. Therefore, sentiment analysis should be able to analyze the person's attitude, opinions, and inclinations in text or actual text. In the case of emotion analysis, it is a priority to simply classify two emotions: positive and negative. In this paper we propose the deep learning based sentimental analysis system according to various optimizer that is SGD, ADAM and RMSProp. Through experimental result RMSprop optimizer shows the best performance compared to others on IMDB data set. Future work is to find more best hyper parameter for sentimental analysis system.

Movie Retrieval System by Analyzing Sentimental Keyword from User's Movie Reviews (사용자 영화평의 감정어휘 분석을 통한 영화검색시스템)

  • Oh, Sung-Ho;Kang, Shin-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1422-1427
    • /
    • 2013
  • This paper proposed a movie retrieval system based on sentimental keywords extracted from user's movie reviews. At first, sentimental keyword dictionary is manually constructed by applying morphological analysis to user's movie reviews, and then keyword weights in the dictionary are calculated for each movie with TF-IDF. By using these results, the proposed system classify sentimental categories of movies and rank classified movies. Without reading any movie reviews, users can retrieve movies through queries composed by sentimental keywords.

Development and Validation of the Letter-unit based Korean Sentimental Analysis Model Using Convolution Neural Network (회선 신경망을 활용한 자모 단위 한국형 감성 분석 모델 개발 및 검증)

  • Sung, Wonkyung;An, Jaeyoung;Lee, Choong C.
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.1
    • /
    • pp.13-33
    • /
    • 2020
  • This study proposes a Korean sentimental analysis algorithm that utilizes a letter-unit embedding and convolutional neural networks. Sentimental analysis is a natural language processing technique for subjective data analysis, such as a person's attitude, opinion, and propensity, as shown in the text. Recently, Korean sentimental analysis research has been steadily increased. However, it has failed to use a general-purpose sentimental dictionary and has built-up and used its own sentimental dictionary in each field. The problem with this phenomenon is that it does not conform to the characteristics of Korean. In this study, we have developed a model for analyzing emotions by producing syllable vectors based on the onset, peak, and coda, excluding morphology analysis during the emotional analysis procedure. As a result, we were able to minimize the problem of word learning and the problem of unregistered words, and the accuracy of the model was 88%. The model is less influenced by the unstructured nature of the input data and allows for polarized classification according to the context of the text. We hope that through this developed model will be easier for non-experts who wish to perform Korean sentimental analysis.

Sentimental Analysis of SW Education News Data (SW 교육 뉴스데이터의 감성분석)

  • Park, SunJu
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.1
    • /
    • pp.89-96
    • /
    • 2017
  • Recently, a number of researches actively focus on the contents and sensitivity of information distributed through SNS as smartphones and SNS gained its popularity. In this paper, we collected online news data about SW education, extracted words after morphological analysis, and analyzed emotions of collected news data by calculating sentimental score of each news datum. Also, the accuracy of the calculated sentimental score was examined. As a result, the number of news related to 'SW education' in the collection period was about 189 per month, and the average of sentimental score was 0.7, which signifies the news related to 'SW education' was emotionally positive. We were positive about the importance of SW education and the policy implementation, but there were negative views on the specific method for the realization. That is, a lack of SW education environment and its education method, a problem related to improvement of SW developers and improvement of their labor conditions, and increase of private education in coding were the factors for the negative viewers.

Study on the social issue sentiment classification using text mining (텍스트마이닝을 이용한 사회 이슈 찬반 분류에 관한 연구)

  • Kang, Sun-A;Kim, Yoo Sin;Choi, Sang Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1167-1173
    • /
    • 2015
  • The development of information and communication technology like SNS, blogs, and bulletin boards, was provided a variety of places where you can express your thoughts and comments and allowing Big Data to grow, many people reveal the opinion of the social issues in SNS such as Twitter. In this study, we would like to pre-built sentimental dictionary about social issues and conduct a sentimental analysis with structured dictionary, to gather opinions on social issues that are created on twitter. The data that I used is "bikini", "nakkomsu" including tweet. As the result of analysis, precision is 61% and F1- score is 74%. This study expect to suggest the standard of dictionary construction allowing you to classify positive/negative opinion on specific social issues.

A Study on Explainable Artificial Intelligence-based Sentimental Analysis System Model

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.142-151
    • /
    • 2022
  • In this paper, a model combined with explanatory artificial intelligence (xAI) models was presented to secure the reliability of machine learning-based sentiment analysis and prediction. The applicability of the proposed model was tested and described using the IMDB dataset. This approach has an advantage in that it can explain how the data affects the prediction results of the model from various perspectives. In various applications of sentiment analysis such as recommendation system, emotion analysis through facial expression recognition, and opinion analysis, it is possible to gain trust from users of the system by presenting more specific and evidence-based analysis results to users.

Informal Quality Data Analysis via Sentimental analysis and Word2vec method (감성분석과 Word2vec을 이용한 비정형 품질 데이터 분석)

  • Lee, Chinuk;Yoo, Kook Hyun;Mun, Byeong Min;Bae, Suk Joo
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.1
    • /
    • pp.117-128
    • /
    • 2017
  • Purpose: This study analyzes automobile quality review data to develop alternative analytical method of informal data. Existing methods to analyze informal data are based mainly on the frequency of informal data, however, this research tries to use correlation information of each informal data. Method: After sentimental analysis to acquire the user information for automobile products, three classification methods, that is, $na{\ddot{i}}ve$ Bayes, random forest, and support vector machine, were employed to accurately classify the informal user opinions with respect to automobile qualities. Additionally, Word2vec was applied to discover correlated information about informal data. Result: As applicative results of three classification methods, random forest method shows most effective results compared to the other classification methods. Word2vec method manages to discover closest relevant data with automobile components. Conclusion: The proposed method shows its effectiveness in terms of accuracy and sensitivity on the analysis of informal quality data, however, only two sentiments (positive or negative) can be categorized due to human errors. Further studies are required to derive more sentiments to accurately classify informal quality data. Word2vec method also shows comparative results to discover the relevance of components precisely.

Deep learning-based Multilingual Sentimental Analysis using English Review Data (영어 리뷰데이터를 이용한 딥러닝 기반 다국어 감성분석)

  • Sung, Jae-Kyung;Kim, Yung Bok;Kim, Yong-Guk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2019
  • Large global online shopping malls, such as Amazon, offer services in English or in the language of a country when their products are sold. Since many customers purchase products based on the product reviews, the shopping malls actively utilize the sentimental analysis technique in judging preference of each product using the large amount of review data that the customer has written. And the result of such analysis can be used for the marketing to look the potential shoppers. However, it is difficult to apply this English-based semantic analysis system to different languages used around the world. In this study, more than 500,000 data from Amazon fine food reviews was used for training a deep learning based system. First, sentiment analysis evaluation experiments were carried out with three models of English test data. Secondly, the same data was translated into seven languages (Korean, Japanese, Chinese, Vietnamese, French, German and English) and then the similar experiments were done. The result suggests that although the accuracy of the sentimental analysis was 2.77% lower than the average of the seven countries (91.59%) compared to the English (94.35%), it is believed that the results of the experiment can be used for practical applications.

A Study of Customer Review Analysis for Product Development based on Korean Language Processing (한글 정형화 방법에 기반한 상품평 감성분석의 제품 개발 적용 방법 연구)

  • Woo, JeHyuk;Jeong, MinKyu;Lee, JaeHyun;Suh, HyoWon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.49-62
    • /
    • 2022
  • Online customer review data can be easily collected on the Internet and also they describe sentimental evaluation of a product in different aspects. Previous sentiment analysis studies evaluate the degree of sentiment with review data, which may have multiple sentences describing different product aspects. Since different aspects of a product can be described in a sentence, the proposed method suggested analyzing a sentence to build a pair of a product aspect terms and sentimental terms. Bidirectional LSTM and CRF algorithms were used in this paper. A pair of aspect terms and sentimental terms are evaluated by pre-defined evaluation rules. The paper suggested using the result of evaulation as inputs of QFD, so that the quantified customer voices effect on the requirements of a new product. Online reviews for a hair dryer were used as an example showing that the proposed approach can derive reasonable sentiment analysis results.