• Title/Summary/Keyword: sensor signal level

Search Result 265, Processing Time 0.034 seconds

Real-Time Monitoring and Warning System for Slope Movements Using FBG Sensor. (광섬유격자 센서를 활용한 사면거동 실시간 안전 진단 시스템)

  • 장기태;정경선;김성환;박권제;이원효;김경태;강창국;홍성진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.60-76
    • /
    • 2000
  • Early detection in real-time response of slope movements ensures tremendous saving of lives and repair costs from catastrophic disaster Therefore, it is essential to constantly monitor the performance and integrity of slope-stabilizing structures such as Rock bolt, Nail and Pile during or after installation. We developed a novel monitoring system using Fiber Bragg Grating (FBG)sensor. It's advantages are highly sensitivity, small dimension and electro-magnetic immunity. capability of multiplexing, system integrity, remote sensing - these serve real-time health monitoring of the structures. Real-time strain measurement by the signal processing program is shown graphically and it gives a warning sound when the monitored strain state exceeds a given threshold level so that any sign of abnormal disturbance on the spot can be easily perceived.

  • PDF

Gaseous Fuel Level Measurement of Ultrasonic Wave based on Gauss Algorithm (가우스알고리즘에 의한 초음파의 가스연료레벨 계측)

  • Kim, Hong-Ju;Choi, Doo-Seuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.161-167
    • /
    • 2018
  • The amount of CNG was measured using a pressure sensor in the case of CNG vehicles. However, the current measurement method causes anxiety to the driver because it is difficult to measure the detailed amount of CNG according to various environmental conditions. This study was performed to measure the amount of CNG in CNG fuel system, and presented the method of measurement by simulating the detection system of CNG. In this experiment, a detection simulator with an ultrasonic sensor in CNG tank of Type-3 was designed, and the reception signal of the ultrasonic sensor was verified by reducing the pressure from 100 bars to 0 bars (increment=5 bars) using compressed air. As a result, the output signal voltage of the ultrasonic sensor decreased as the pressure in the tank decreased, and the it was verified that the shape of the graph was linearity.

Characteristics Analysis of SiPM for Detection of High Sensitivity of Portable Detectors (휴대용 검출기의 방사선 고감도 검출을 위한 SiPM 특성 분석)

  • Byung-Wuk Kang;Sun-Kook Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.897-902
    • /
    • 2023
  • The purpose of this paper is to analyze the characteristics of Silicon Photomultiplier (SiPM) for the realization of high-sensitivity radiation detection in portable detectors. Portable X-ray detectors offer the advantage of quickly accessing the patient's location and obtaining real-time images, allowing physicians to perform rapid diagnoses. However, this mobility comes with challenges in achieving accurate radiation detection. In existing detectors, SiPM is used for a simple purpose of detecting X-ray triggers. To verify the feasibility of high-sensitivity X-ray detection through SiPM, seven types of SiPM sensors were compared and selected, and their characteristics were analyzed. The SiPM used in the final test demonstrated the ability to distinguish signals at the ultra-low radiation level of 10 nGy, and it was observed that the slope of the signal rise curve varies with the X-ray tube voltage. Utilizing the characteristics of SiPM, which exhibits changes in signal level and duration with X-ray dose, it appears possible to achieve high-sensitivity measurements for X-ray detection.

Development of Multi-Sensor based River Monitoring Technology for River Flood Risk surveillance (하천 홍수 위험 감시를 위한 다중센서 기반 하천 관측 기술 개발)

  • Jang, Bong-Joo;Jung, In Taek
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.11
    • /
    • pp.1372-1382
    • /
    • 2020
  • This paper proposes a core technology for a micro river monitoring terminal device suitable for flood monitoring in small rivers and valleys. Our proposed device is basically equipped with a 77GHz radar, gyro and accelerometer sensors. To measure the flow velocity and water level, we proposed a signal processing technique that extracts pure water energy components from the observed Doppler velocity and reflection intensity from the radar. And to determine the stability of the river structure equipped with our device, we constantly monitor the displacement of the measured values of the gyro and accelerometer sensors. Experimental result verified that our method detects pure water energy in various river environments and distinguishes between flow velocity and water level well. And we verified that vibration and position change of structures can be determined through a gyro sensor. In future research, we will work to build a secure digital twin river network by lowering the cost of supplying RF-WAV devices. Also we expect our device to contribute to securing a preventive golden time in rivers.

Detection of the Ultrasonic Signals due to Partial Discharges in a 154kV Transformer

  • Kweon, Dong-Jin;Chin, Sang-Bum;Kwak, Hee-Ro
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.297-303
    • /
    • 2002
  • We have developed an on-line ultrasonic detector to monitor partial discharge in an operating transformer. The ultrasonic sensor has 150[KHz] resonance frequency and contains a pre-amplifier with 60[㏈] gain. The on-line ultrasonic detector has 50~300[KHz] frequency band-pass filter to remove electrical and mechanical noises from the transformer. This detector has an ultrasonic signal discrimination algorithm which discriminates ultrasonic signals due to partial discharge in a transformer. A moving average method of ultrasonic signal number was employed to effectively monitor the increasing trend of the partial discharge. This paper describes an experience of partial discharge detection in a 154[㎸] operating transformer using an ultrasonic detector. With regards to gas analysis in oil, C2H2 gas was produced with a warning level in this transformer We detected ultrasonic signals on the transformer steel wall, and estimated the position of partial discharge. With further inspection, we found carbonized marks due to partial discharge on the supporting bolt which fastens the windings.

The Study of Gait Analysis for Hemiplegic Patient Using 3-axis Acceleration Signal (3축 가속도 신호를 이용한 편마비 환자의 보행 분석에 대한 연구)

  • Lee, Hyo-Ki;Lee, Kyoung-Joung;Seo, Ji-Hyun;Park, Si-Woon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.869-870
    • /
    • 2006
  • In this study, we proposed an algorithm which can detect the walking event in hemiplegic patient using three axis acceleration signal. Twenty hemiplegic patients were participated in an experiment on a level corridor. To evaluate the accuracy, we compared the time difference between the detected event and signal from FSR-Sensor. Consequently, the mean difference of 46.1ms was obtained and it suggests that the proposed method is effective to detect the walking event in hemiplegic patient. In future, these results could be used to evaluate the walking ability in hemiplegic patient in clinical practice.

  • PDF

Preceding Study on the Sensing Part of Level Measurement System of Launch Vehicle Propellant Tanks (발사체 탱크 추진제 수위 측정시스템 감지부 선행연구)

  • Shin, Dong-Sun;Lee, Eung-Shin;Ko, Hyun-Seok;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.54-57
    • /
    • 2009
  • The propellant level measurement system of the next Koreanized launch vehicle shall adapt a capacitive type sensor, which can generate capacitive values continuously considering cryogenic environment and the characteristics of flowrate control. At present there are a twin-arc and a triple-arc methods as a capacitive type signal sensing method. In this study a highly accurate triple-arc method, which can apply to almost all fluids, is chosen. In this paper the review results on the principle of triple-arc sensing, the analysis results on the influence on capacitive values due to shape change of sensing part, and the simulation results to monitor the influence on signal sensing according to the location of sensing part in the upper part of propellant tank are included. Information obtained from this study can be used in the designing and manufacturing of on-board propellant level measurement system in tanks.

  • PDF

Development of a Signal Conditioning Circuit for Capacitive Displacement Sensors and Performance Evaluation (정전용량형 변위 센서 신호 처리 회로 개발 및 성능 평가)

  • Kim, Jong-Ahn;Kim, Jae-Wan;Eom, Tae-Bong;Kang, Chu-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.60-67
    • /
    • 2007
  • A signal conditioning circuit for capacitive displacement sensors was developed using a high frequency modulation/demodulation method, and its performance was evaluated. Since capacitive displacement sensors can achieve high resolution and linearity, they have been widely used as precision sensors within the range of several hundred micrometers. However, they inherently have a limitation in low frequency range and some nonlinearity characteristics and so a specially designed signal conditioning circuit is needed to handle these properties. The developed signal processing circuit consists of three parts: linearization, modulation/demodulation, and nonlinearity compensation. Each part was constructed discretely using several IC chips and passive elements. An evaluation system for precision displacement sensors was developed using a laser interferometer, a precision stage, and a PID position controller. The signal processing circuit was tested using the evaluation system in the respect of resolution, repeatability, linearity, and so on. From the experimental results, we know that a highly linear voltage output can be obtained successfully, which is proportional to displacement and the nonlinearity of output is less than 0.02% of full range. However, in the future, further investigation is required to reduce noise level and phase delay due to a low-pass filter. The evaluation system also can be applied effectively to calibration and evaluation of precision sensors and stages.

A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor

  • Cui, Yong;Gao, Robert X.;Yang, Dengfeng;Kazmer, David O.
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-22
    • /
    • 2007
  • The energy efficiency of a self-powered wireless sensing system for pressure monitoring in injection molding is analyzed using Bond graph models. The sensing system, located within the mold cavity, consists of an energy converter, an energy modulator, and a ultrasonic signal transmitter. Pressure variation in the mold cavity is extracted by the energy converter and transmitted through the mold steel to a signal receiver located outside of the mold, in the form of ultrasound pulse trains. Through Bond graph models, the energy efficiency of the sensing system is characterized as a function of the configuration of a piezoceramic stack within the energy converter, the pulsing cycle of the energy modulator, and the thicknesses of the various layers that make up the ultrasonic signal transmitter. The obtained energy models are subsequently utilized to identify the minimum level of signal intensity required to ensure successful detection of the ultrasound pulse trains by the signal receiver. The Bond graph models established have shown to be useful in optimizing the design of the various constituent components within the sensing system to achieve high energy conversion efficiency under a compact size, which are critical to successful embedment within the mold structure.

Optimization of a Radio-frequency Atomic Magnetometer Toward Very Low Frequency Signal Reception

  • Lee, Hyun Joon;Yu, Ye Jin;Kim, Jang-Yeol;Lee, Jaewoo;Moon, Han Seb;Cho, In-Kui
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.213-219
    • /
    • 2021
  • We describe a single-channel rubidium (Rb) radio-frequency atomic magnetometer (RFAM) as a receiver that takes magnetic signal resonating with Zeeman splitting of the ground state of Rb. We optimize the performance of the RFAM by recording the response signal and signal-to-noise ratio (SNR) in various parameters and obtain a noise level of 159 $fT{\sqrt{Hz}}$ around 30 kHz. When a resonant radiofrequency magnetic field with a peak amplitude of 8.0 nT is applied, the bandwidth and signal-to-noise ratio are about 650 Hz and 88 dB, respectively. It is a good agreement that RFAM using alkali atoms is suitable for receiving signals in the very low frequency (VLF) carrier band, ranging from 3 kHz to 30 kHz. This study shows the new capabilities of the RFAM in communications applications based on magnetic signals with the VLF carrier band. Such communication can be expected to expand the communication space by overcoming obstacles through the high magnetic sensitive RFAM.