• Title/Summary/Keyword: sensor scanning

Search Result 455, Processing Time 0.024 seconds

Preliminary Study on Rapid Measurement of Gross Alpha/Beta and 90Sr Activities in Surface Soil by Mobile ZnS(Ag)/PTV Array and Handheld PVT Rod with Gated Energy Channels

  • Lee, Chanki;Kim, Hee Reyoung
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.194-203
    • /
    • 2021
  • Background: Surface soil radiation monitoring around nuclear facilities is important to classify and characterize the contaminated areas. A scanning and direct measurement technique can survey the sites rapidly before starting sampling analysis. Materials and Methods: Regarding this, we test and suggest a measurement technique for gross alpha/beta and 90Sr activities in surface soil based on a mobile ZnS(Ag)/PVT (polyvinyltoluene) array and a handheld PVT rod, respectively. To detect 90Sr selectively in soil mixed with naturally occurring radioactive materials, chosen energy channel counts from the multichannel analyzers were used instead of whole channel counts. Soil samples contaminated with exempt liquid 90Sr with 1 Bq·g-1, 3 Bq·g-1, and 10 Bq·g-1 were prepared and hardened by flocculation. Results and Discussion: The mobile ZnS(Ag)/PVT array could discriminate gross alpha, gross beta, and gamma radiation by the different pulse-shaped signal features of each sensor material. If the array is deployed on a vehicle, the scan minimum detectable concentration (MDC) range will be about 0.11-0.17 Bq·g-1 at 18 km·h-1 speed, highly sensitive to actual sites. The handheld PVT rod with 12 mm (Φ) × 20 mm (H) size can directly measure 90Sr selectively if channels on which energies are from 1,470 and 2,279 keV are gated, minimizing crossdetection of other radionuclides. These methods were verified by measuring soil samples fabricated with homogeneous 90Sr concentrations, showing static MDC of 2.16 Bq·g-1 at a measurement time of 300 seconds. Conclusion: Based on the results, comprehensive procedures using these detectors are suggested to optimize soil sites survey.

Application and Functionalization of Graphene Oxide on Cotton Fabric Via Aerosol Spray Pyrolysis (그래핀 옥사이드의 에어로졸 분무열분해 공정을 통한 면직물의 전기전도성 및 물성 평가)

  • Ohm, Hyunji;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.24 no.1
    • /
    • pp.138-145
    • /
    • 2022
  • Today, graphene loaded textiles are being considered promising smart clothing due to their high conductivity. In this study, we reported reduced graphene oxide(r-GO) deposited pure cotton fabrics fabricated with a colloidal solution of graphene(GO), using a one-step aerosol spray pyrolysis(ASP) process and their potential application on smart textiles. The ASP process is advantageous in that it is easily implementable and can be applied for continuous processing. Moreover, this process has never been applied to deposit r-GO on pure cotton fabric. The field emission-scanning microscopy (FE-SEM) observation, Fourier transform-infrared(FT-IR) analysis, Raman spectroscopy, X-ray diffraction(XRD) analysis, and ultraviolet transmittance(UVT) were used to evaluate material properties of the r-GO colloids. The resistance was also measured to evaluate the electrical conductivity of the specimens. The results revealed that the r-GO was successfully deposed on specimens, and the specimen with the highest electrical conductivity demonstrated an electrical resistance value of 2.27 kΩ/sq. Taken together, the results revealed that the ASP method demonstrated a high potential for effective deposition of r-GO on cotton fabric specimens and is a prospect for the development of conductive cotton-based smart clothing. Therefore, this study is also meaningful in that the ASP process can be newly applied by depositing r-GO on the pure cotton fabric.

Structural Shape Estimation Based on 3D LiDAR Scanning Method for On-site Safety Diagnostic of Plastic Greenhouse (비닐 온실의 현장 안전진단을 위한 3차원 LiDAR 스캔 기법 기반 구조 형상 추정)

  • Seo, Byung-hun;Lee, Sangik;Lee, Jonghyuk;Kim, Dongsu;Kim, Dongwoo;Jo, Yerim;Kim, Yuyong;Lee, Jeongmin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.5
    • /
    • pp.1-13
    • /
    • 2024
  • In this study, we applied an on-site diagnostic method for estimating the structural safety of a plastic greenhouse. A three-dimensional light detection and ranging (3D LiDAR) sensor was used to scan the greenhouse to extract point cloud data (PCD). Differential thresholds of the color index were applied to the partitions of raw PCD to separate steel frames from plastic films. Additionally, the K-means algorithm was used to convert the steel frame PCD into the nodes of unit members. These nodes were subsequently transformed into structural shape data. To verify greenhouse shape reproducibility, the member lengths of the scan and blueprint models were compared with the measurements along the X-, Y-, and Z-axes. The error of the scan model was accurate at 2%-3%, whereas the error of the blueprint model was 5.4%. At a maximum snow depth of 0.5 m, the scan model revealed asymmetric horizontal deflection and extreme bending stress, which indicated that even minor shape irregularities could result in critical failures in extreme weather. The safety factor for bending stress in the scan model was 18.7% lower than that in the blueprint model. This phenomenon indicated that precise shape estimation is crucial for safety diagnostic. Future studies should focus on the development of an automated process based on supervised learning to ensure the widespread adoption of greenhouse safety diagnostics.

Quality properties of fermented mugworts and the rapid pattern analysis of their volatile flavor components via surface acoustic wave (SAW) based electronic nose sensor in the GC system (발효 인진쑥과 약쑥의 이화학적 품질특성 및 GC와 SAW센서기반 electronic nose에 의한 향기패턴의 신속분석)

  • Song, Hyo-Nam
    • Food Science and Preservation
    • /
    • v.20 no.4
    • /
    • pp.554-563
    • /
    • 2013
  • The changes in quality properties and nutritional components for two mugworts, namely, Artemisia capillaris Thumberg Artemisiae asiaticae Nakai fermented by Bacillus strains were characterized followed by rapid pattern analysis of volatile flavor compounds through the SAW-based electronic nose sensor in the GC system. After fermentation, the pH has remarkably decreased from 6.0~6.4 to 4.6~5.1 and there has been a slight change in the total soluble solids. The L (lightness) and b (yellowness) values in the Hunter's color system significantly decreased, whilst the a (redness) value increased via fermentation. The HPLC analysis demonstrated that the total amino acids increased in quantity and the essential amino acids were higher in the A. asiaticae Nakai than in the A. capillaris Thumberg, specially with high contents of glutamic and aspartic acid. After fermentation, the monounsaturated fatty acid increased in the A. asiaticae Nakai and the polyunsaturated fatty acids increased in the A. capillaris Thumberg. While the total polyphenol contents have not been affected by fermentation, the total sugar contents have dramatically decreased. Scopoletin, which is one of the most important index components in mugworts, was highly abundant in the A. capillaris Thumberg; however, it was not detected in the A. asiaticae Nakai. Small pieces of plant tissue in the surface microstructure were found in the fermented mugworts through the use of the scanning electron microscope (SEM). Volatile flavor compounds via electronic nose showed that the intensity of several peaks has increased and additional seven flavor peaks have been produced after fermentation. The VaporPrintTM images demonstrated a notable difference in flavors between the A. asiaticae Nakai and A. capillaris Thumberg, and the fermentation enabled the mugworts to produce subtle differences in flavor.

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

Development of Passive Millimeter-wave Security Screening System (수동 밀리미터파 보안 검색 시스템 개발)

  • Yoon, Jin-Seob;Jung, Kyung Kwon;Chae, Yeon-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.138-143
    • /
    • 2016
  • The designed and fabricated millimeter-wave security screening system receives radiation energy from an object and a human body. The imaging system consist of sixteen array antennas, sixteen four-stage LNAs, sixteen detectors, an infrared camera, a CCD camera, reflector, and a focusing lens. This system requires high sensitivity and wide bandwidth to detect the input thermal noise. The LNA module of the system has been measured to have 65.8 dB in average linear gain and 82 GHz~102 GHz in bandwidth to enhance the sensitivity for thermal noise, and to receive it over a wide bandwidth. The detector is used for direct current (DC) output translation of millimeter-wave signals with a zero bias Schottky diode. The lens and front-end of the millimeter-wave sensor are important in the system to detect the input thermal noise signal. The frequency range in the receiving sensitivity of the detectors was 350 to 400 mV/mW at 0 dBm (1 mW) input power. The developed W-band imaging system is effective for detecting and identifying concealed objects such as metal or plastic.

Effect of Surfactants on ZnO Synthesis by Hydrothermal Method and Photocatalytic Properties (계면활성제 첨가에 의한 산화아연의 수열합성과 광촉매 특성)

  • Hyeon, Hye-Hyeon;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • Zinc oxide is, one of metal oxide semiconductor, harmless to human and environment-friendly. It has excellent chemical and thermal stability properties. Wurtzite-zinc oxide is a large band gap energy of 3.37 eV and high exciton binding energy of 60 meV. It can be applied to various fields, such as solar cells, degradation of the dye waste, the gas sensor. The photocatalytic activity of zinc oxide is varied according to the particle shape and change of crystallinity. Therefore, It is very important to specify the additives and the experimental variables. In this study, the zinc oxide were synthesized by using a microwave assisted hydrothermal synthesis. The precursor was used as the zinc nitrate, the pH value was controlled as 11 by NaOH. Surfactants are the ethanolamine, cetyltrimethylammonium bromide, sodium dodecyl sulfate, sorbitan monooleate was added by changing the concentration. The composite particles had the shape of a star-like, curcular cone, seed shape, flake-sphere. Physical and chemical properties of the obtained zinc oxide was characterized using x-ray diffractometer, field emission scanning electron microscopy, thermogravimetric analysis and optical properties was characterized using UV-visible spectroscopy, photoluminescence and raman spectroscopy.

Adhesion properties of Microorganisms onto surfaces of phosphorylcholine(PC)-modified copolymer for sensor applications (센서 응용을 위해 포스포릴 콜린으로 개질된 고분자 막 표면의 미생물 점착 특성)

  • Kim, Sun-Yong;Sohn, Ok-Jae;Chae, Kyu-Ho;Rhee, Jong-II
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.226-230
    • /
    • 2008
  • In this study we have studied adhesive properties of various microorganisms onto surfaces of phosphorylcholine-based copolymer for the application of optical biosensors. Three microorganisms, E.coli JM109, B.cereus 318, P.pastoris X-33 were cultivated in confocal cultivation dishes with glass surface, respectively. The glass surface was coated with copolymer containing 0% 5% and 10% MPC (2-methacryloxyethyl phosphorylcholine). After cultivation, culture medium was discarded and adhered microorganisms were dyed by gram staining method. Adhered microorganisms were analyzed using an optical microscope and scanning electronic microscope (SEM). A great number of microorganisms, $2-3{\times}10^3/mm^2$ were adhered on the surfaces of glass and copolymer membrane without MPC. But the antifouling effects of copolymer containing 5% and 10% phosphorylcholine were large, that microorganisms of less than $50-100/mm^2$ were attached on the copolymer membranes. Thus, the copolymer containing phosphorylcholine is very useful as an antifouling coating material for optical biosensor.

Exhaust Gas Emission and Particulate Matter (PM) from Gasoline, LPG and Diesel Vehicle Using Different Engine Oil (가솔린, LPG, 디젤 차량에서 윤활유에 따른 배출가스 및 입자상물질)

  • Jang, Jinyoung;Lee, Youngjae;Kwon, Ohseok;Woo, Youngmin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Lee, Minseob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 2016
  • This study effect of engine oils on regulated fuel economy and emissions including particulate matter (PM) to provide basic data for management of engine oil in vehicles. Three engine oils (Group III base oil, Group III genuine oil with additive package and synthetic oil with poly alpha olefins (PAOs)) were used in one gasoline, one LPG(liquefied petroleum gas) and two diesel vehicles. In the case of diesel vehicles, one is a diesel vehicle without DPF (diesel particulate filter) other is a diesel vehicle with DPF. In this study, the US EPA emission test cycle FTP-75, representing city driving, was used. HORIBA, PIERBURG, and AVL gas analyzers were used to measure the fuel economy and regulated emissions such as CO, NOx, and THC. The number of PM was measured using a PPS (pegasor particle sensor). And, the shape of PMs was analyzed by SEM (scanning electron microscope). The effects of oil type on fuel economy, exhaust gas, and PM were not significant because engine oil consumption by evaporation and combustion in the cylinder is very tiny. Fuel and vehicle type were dominant factors in fuel economy and emissions. HC emission from gasoline vehicles was higher than that from other vehicles and NOx emission from diesel vehicles was higher than that from other vehicles. The number of PM was not affected by the engine oil, but by the driving pattern and fuel. The shapes of the PM, sampled from each vehicle using any test engine oil, were similar.

The Electrical Characteristics of the Grain Boundary in a $BaTiO_{3}$ PTC Thermistor ($BaTiO_{3}$ PTC 서미스터 입계의 전기적인 특성)

  • Kwon, Hyuk-Joo;Lee, Jae-Sung;Lee, Yong-Soo;Lee, Dong-Kee;Lee, Yong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 1992
  • PTC thermistor has been fabricated with as-received $BaTiO_{3}$ powder and its electrical properties were investigated. The resistivity of the PTC thermistor was measured at $20^{\circ}C$ intervals from $20^{\circ}C$ to $200^{\circ}C$. The electrical characteristics of the PTC thermistor are determined by the ac complex impedance analysis. The average grain size measured with a scanning electron microscope increased from $3.8{\mu}m$ to $8.8{\mu}m$ with increasing sintering temperature between $1280^{\circ}C$ and $1400^{\circ}C$. The maximum resistivity jump was $4{\times}10^{5}$. The bulk resistivity of the thermistor sintered above $1340^{\circ}C$ decreased with increasing temperature of the measurement. The grain boundary resistance increased exponentially, the grain boundary capacitance decreased, and the built-in potential at the grain boundary increased with increasing temperature of the measurement. The charge densiy at the grain boundary increased with increasing temperature up to $110^{\circ}C$, which leveled off with further increase in measuring temperature.

  • PDF