• Title/Summary/Keyword: sensor routing protocols

Search Result 208, Processing Time 0.018 seconds

Efficient Post-Quantum Secure Network Coding Signatures in the Standard Model

  • Xie, Dong;Peng, HaiPeng;Li, Lixiang;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2427-2445
    • /
    • 2016
  • In contrast to traditional "store-and-forward" routing mechanisms, network coding offers an elegant solution for achieving maximum network throughput. The core idea is that intermediate network nodes linearly combine received data packets so that the destination nodes can decode original files from some authenticated packets. Although network coding has many advantages, especially in wireless sensor network and peer-to-peer network, the encoding mechanism of intermediate nodes also results in some additional security issues. For a powerful adversary who can control arbitrary number of malicious network nodes and can eavesdrop on the entire network, cryptographic signature schemes provide undeniable authentication mechanisms for network nodes. However, with the development of quantum technologies, some existing network coding signature schemes based on some traditional number-theoretic primitives vulnerable to quantum cryptanalysis. In this paper we first present an efficient network coding signature scheme in the standard model using lattice theory, which can be viewed as the most promising tool for designing post-quantum cryptographic protocols. In the security proof, we propose a new method for generating a random lattice and the corresponding trapdoor, which may be used in other cryptographic protocols. Our scheme has many advantages, such as supporting multi-source networks, low computational complexity and low communication overhead.

Evaluation Of LoRaWAN In A Highly Dense Environment With Design Of Common Automated Metering Platform (CAMP) Based On LoRaWAN Protocol

  • Paul, Timothy D;Rathinasabapathy, Vimalathithan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1540-1560
    • /
    • 2022
  • Latest technological innovation in the development of compact lower power radios has led to the explosion of Internet of Things. With Wi-Fi, Zigbee and other physical layer protocols offering short coverage area there was a need for a RF protocol that had a larger coverage area with low power consumption. LoRa offers Long Range with lower power consumption. LoRa offers point to point and point to multipoint connections. with Single hop communication in place the need for routing protocols are eliminated. LoRa Wide Area Network stack can accommodate thousands of nodes under a single LoRa gateway with a single hop communication between the end nodes and LoRaWAN gateway. This paper takes an experimental approach to analyze the basic physical layer parameters of LoRa and the practical coverage offered by a LoRaWAN under highly dense urban conditions with variable topography. The insights gained from the practical deployment of the LoRaWAN network, and the subsequent performance analysis is used to design a novel public utility monitoring platform. The second half of the papers is designing a robust platform to integrate both existing wired sensor water meters, current and future generation wireless water meters. The Common Automated Metering Platform is designed to integrate both wired sensors and wireless (LoRaWAN and Wi-Fi) supported water meters. This integrated platform reduces the number of nodes under each LoRaWAN gateway and thus improves the scalability of the network. This architecture is currently designed to accommodate one utility application but can be modified to integrate multi-utility applications.

A Design of Wireless Sensor Node Using Embedded System (임베디드 시스템을 활용한 무선 센서 노드설계)

  • Cha, Jin-Man;Lee, Young-Ra;Park, Yeon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.623-628
    • /
    • 2009
  • The emergence of compact and low-power wireless communication sensors and actuators in the technology supporting the ongoing miniaturization of processing and storage allows for entirely the new kinds of embedded systems. These systems are distributed and deployed in environments where they may have been designed into a particular control method, and are often very dynamic. Collection of devices can communicate to achieve a higher level of coordinated behavior. Wireless sensor nodes deposited in various places provide light, temperature, and activity measurements. Wireless sensor nodes attached to circuits or appliances sense the current or control the usage. Together they form a dynamic and multi-hop routing network connecting each node to more powerful networks and processing resources. Wireless sensor networks are a specific-application and therefore they have to involve both software and hardware. They also use protocols that relate to both applications and the wireless network. Wireless sensor networks are consumer devices supporting multimedia applications such as personal digital assistants, network computers, and mobile communication devices. Wireless sensor networks are becoming an important part of industrial and military applications. The characteristics of modem embedded systems are the capable of communicating adapting the different operating environments. In this paper, We designed and implemented sensor network system which shows through host PC sensing temperature and humidity data transmitted for wireless sensor nodes composed wireless temperature and humidity sensor and designs sensor nodes using embedded system with the intention of studying USN.

Design and Analysis of Lightweight Trust Mechanism for Accessing Data in MANETs

  • Kumar, Adarsh;Gopal, Krishna;Aggarwal, Alok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.1119-1143
    • /
    • 2014
  • Lightweight trust mechanism with lightweight cryptographic primitives has emerged as an important mechanism in resource constraint wireless sensor based mobile devices. In this work, outlier detection in lightweight Mobile Ad-hoc NETworks (MANETs) is extended to create the space of reliable trust cycle with anomaly detection mechanism and minimum energy losses [1]. Further, system is tested against outliers through detection ratios and anomaly scores before incorporating virtual programmable nodes to increase the efficiency. Security in proposed system is verified through ProVerif automated toolkit and mathematical analysis shows that it is strong against bad mouthing and on-off attacks. Performance of proposed technique is analyzed over different MANET routing protocols with variations in number of nodes and it is observed that system provide good amount of throughput with maximum of 20% increase in delay on increase of maximum of 100 nodes. System is reflecting good amount of scalability, optimization of resources and security. Lightweight modeling and policy analysis with lightweight cryptographic primitives shows that the intruders can be detection in few milliseconds without any conflicts in access rights.

K-connected, (K+1)-covered Fault-tolerant Topology Control Protocol for Wireless Sensor Network (무선 센서 망을 위한 K-연결 (K+1)-감지도 고장 감내 위상 제어 프로토콜)

  • Park, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1133-1141
    • /
    • 2009
  • In this paper, we present a distributed fault-tolerant topology control protocol that configure a wireless sensor network to achieve k-connectivity and (k+1)-coverage. One fundamental issue in sensor networks is to maintain both sensing coverage and network connectivity in order to support different applications and environments, while some least active nodes are on duty. Topology control algorithms have been proposed to maintain network connectivity while improving energy efficiency and increasing network capacity. However, by reducing the number of links in the network, topology control algorithms actually decrease the degree of routing redundancy. Although the protocols for resolving such a problem while maintaining sensing coverage were proposed, they requires accurate location information to check the coverage, and most of active sensors in the constructed topology maintain 2k-connectivity when they keep k-coverage. We propose the fault-tolerant topology control protocol that is based on the theorem that k-connectivity implies (k+1)-coverage when the sensing range is at two times the transmission range. The proposed distributed algorithm does not need accurate location information, the complexity is O(1). We demonstrate the capability of the proposed protocol to provide guaranteed connectivity and coverage, through both geometric analysis and extensive simulation.

NetLogo Extension Module for the Active Participatory Simulations with GoGo Board (고고보드를 이용한 능동적 참여 모의실험을 위한 NetLogo 확장 모듈)

  • Xiong, Hong-Yu;So, Won-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1363-1372
    • /
    • 2011
  • Flooding based routing protocols are usually used to disseminate information in wireless sensor networks. Those approaches, however, require message retransmissions to all nodes and induce huge collision rate and high energy consumption. In this paper, HoGoP (Hop based Gossiping Protocol) in which all nodes consider the number of hops from sink node to them, and decide own gossiping probabilities, is introduced. A node can decide its gossiping probability according to the required average reception percentage and the number of parent nodes which is counted with the difference between its hop and neighbors' ones. Therefore the decision of gossiping probability for network topology is adaptive and this approach achieves higher message reception percentage with low message retransmission than the flooding scheme. Through simulation, we compare the proposed protocol with some previous ones and evaluate its performance in terms of average reception percentage, average forwarding percentage, and forwarding efficiency. In addition, average reception percentage is analyzed according to the application requirement.

LECEEP : LEACH based Chaining Energy Efficient Protocol (에너지 효율적인 LEACH 기반 체이닝 프로토콜 연구)

  • Yoo, Wan-Ki;Kwon, Tae-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.801-808
    • /
    • 2010
  • LEACH, one of hierarchical based routing protocols, was proposed for energy efficiency which is the most important requirement of Wireless Sensor Network(WSN). LEACH protocol is composed of a cluster of certain large number of clusters, which have a cluster head and member nodes. Member nodes send sensing data to their cluster heads, and the cluster heads aggregate the sensing data and transmit it to BS. The challenges of LEACH protocol are that cluster heads are not evenly distributed, and energy consumption to transmit aggregated data from Cluster heads directly to BS is excessive. This study, to improve LEACH protocol, suggests LECEEP that transmit data to contiguity cluster head that is the nearest and not far away BS forming chain between cluster head, and then the nearest cluster head from BS transmit aggregated data finally to BS. According to simulation, LECEEP consumes less energy and retains more number of survival node than LEACH protocol.

Power Consumption Analysis of Routing Protocols using Sensor Network Simulator (센서 네트워크 시뮬레이터를 이용한 라우팅 프로토콜의 전력소모량 분석)

  • Kim, Bang-Hyun;Jung, Yong-Doc;Kim, Tea-Kyu;Kim, Jong-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.414-418
    • /
    • 2006
  • 유비쿼터스 컴퓨팅의 인프라가 되는 센서 네트워크는 매우 작은 하드웨어로 이루어지는 많은 수의 센서 노드들로 구성된다. 이 네트워크의 토폴로지와 라우팅 방식은 그 목적에 따라 결정되어야 하며, 하드웨어 및 소프트웨어도 필요한 경우에는 변경되어야 한다. 따라서 그러한 네트워크를 최적으로 설계하기 위해서는 시스템 동작을 확인하고 성능을 예측할 수 있는 센서 네트워크 시뮬레이터가 필요하다. 현존하는 몇몇 센서 네트워크 시뮬레이터들은 특정 하드웨어나 운영체제에 맞추어 개발되었기 때문에, 그러한 특정 시스템들을 위해서만 사용될 수 있다. 그리고 시스템 설계 상의 주요 이슈가 되는 전력 소모량 및 프로그램 실행 시간을 추정하기 위한 어떤 수단도 지원하지 못하고 있다. 이 연구에서는 기존의 센서 네트워크 시뮬레이터들이 갖고 있는 문제점을 해결한 시뮬레이터를 개발하고, 센서 네트워크의 계층적 라우팅 프로토콜인 LEACH, TEEN, APTEEN의 전력소모량을 시뮬레이션을 이용하여 분석하였다. 시뮬레이션의 작업부하인 명령어 트레이스로는 ATmega128L 마이크로컨트롤러용 크로스컴파일러에 의해 생성된 실행 이미지를 사용하였다. 따라서 각각의 라우팅 프로토콜을 실제 센서 보드에서 동작하는 응용 프로그램으로 구현하고, 컴파일된 실행 이미지를 작업부하로 사용하여 시뮬레이션 하였다. 라우팅 프로그램들은 ETRI의 센서 네트워크 운영체제인 Nano-Q+ 1.6.1을 기반으로 구현되었으며, 하드웨어 플랫폼은 옥타컴의 센서 보드인 Nano-24이다. 시뮬레이션 결과에 따르면, 센서 네트워크는 그 사용 목적에 따라 라우팅 프로토콜을 적절히 선택해야 한다는 것을 알 수 있다. 즉, LEACH는 주기적으로 네트워크의 상황을 체크해야 하는 경우에 적합하고, TEEN은 환경의 변화를 수시로 감지해야 하는 경우에 적합하다. 그리고 APTEEN은 전력소모량과 기능 측면을 모두 고려할 때 가장 효과적인 라우팅 프로토콜이라고 할 수 있다.iRNA 상의 의존관계를 분석할 수 있었다.수안보 등 지역에서 나타난다 이러한 이상대 주변에는 대개 온천이 발달되어 있었거나 새로 개발되어 있는 곳이다. 온천에 이용하고 있는 시추공의 자료는 배제하였으나 온천이응으로 직접적으로 영향을 받지 않은 시추공의 자료는 사용하였다 이러한 온천 주변 지역이라 하더라도 실제는 온천의 pumping 으로 인한 대류현상으로 주변 일대의 온도를 올려놓았기 때문에 비교적 높은 지열류량 값을 보인다. 한편 한반도 남동부 일대는 이번 추가된 자료에 의해 새로운 지열류량 분포 변화가 나타났다 강원 북부 오색온천지역 부근에서 높은 지열류량 분포를 보이며 또한 우리나라 대단층 중의 하나인 양산단층과 같은 방향으로 발달한 밀양단층, 모량단층, 동래단층 등 주변부로 NNE-SSW 방향의 지열류량 이상대가 발달한다. 이것으로 볼 때 지열류량은 지질구조와 무관하지 않음을 파악할 수 있다. 특히 이러한 단층대 주변은 지열수의 순환이 깊은 심도까지 가능하므로 이러한 대류현상으로 지표부근까지 높은 지온 전달이 되어 나타나는 것으로 판단된다.의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{99m}Tc$-transierrin이 감염 병소의 영상진단에 사용될 수 있을 것으로 기대된다.리를 정량화 하였다. 특히 선조체에서의 도파민 유리에 의한 수용체 결합능의 감소는 흡연에 의한 혈중 니코틴의 축적 농도와 양의 상관관계를 보였다(rho=0.9, p=0.04). 결론: $[^{11}C]raclopride$ PET을 이용하여 비흡연 정상인에서 흡연에 의한 도파민 유리를 영상화 및 정량화 하였고, 흡연에 의한 선조체내 도파민 유리는 흡연시 흡수된

  • PDF