본 논문에서는 1-3형 압전복합재료를 단일상의 균질 압전매질로 모델링하기 위해 필요한 등가의 물성을 유한요소 해석으로 직접 추출하는 기법의 정확도를 다룬다. 직접 추출 기법은 압전재료의 전기적, 기계적 거동과 상호 간 커플링을 기술하는 구성방정식을 기반으로 물성 행렬의 개별 성분들을 직접적으로 산출하는 방법이다. 직접 추출에 사용되는 두 가지 구성방정식 조합 간의 정확도를 비교하기 위하여 단일 1-3형 압전복합재료 하이드로폰을 대상으로 등가물성과 수신감도를 산출하고 전체 영역에 대한 유한요소 해석 결과와 비교한다. 물성 추출의 정확도는 압전복합재료를 구성하는 폴리머의 탄성 특성과 밀접한 관련이 있음을 확인하고, 오차 원인을 분석하여 정확한 등가물성 산출을 위한 가이드라인을 제시한다. 압전복합재료 하이드로폰과 주변의 음향구조물을 포함하는 스테이브 규모에 대해서도 등가 모델링을 적용하여 추출된 물성의 정확도와 연산량 감소를 확인한다.
깊이 추정은 차량, 로봇, 드론의 자율주행을 위한 3차원 지도 생성의 핵심 기술이다. 기존의 센서 기반 깊이 추정 방식은 정확도는 높지만 가격이 비싸고 해상도가 낮다. 반면 카메라 기반 깊이 추정 방식은 해상도가 높고 가격이 저렴하지만 정확도가 낮다. 본 연구에서는 무인항공기 카메라의 깊이 추정 성능 향상을 위해 Self-Attention 기반의 비지도 단안 카메라 영상 깊이 추정을 제안한다. 네트워크에 Self-Attention 연산을 적용하여 전역 특징 추출 성능을 향상시킨다. 또한 카메라 파라미터를 학습하는 네트워크를 추가하여 카메라 칼리브레이션이 안되어있는 이미지 데이터에서도 사용 가능하게 한다. 공간 데이터 생성을 위해 추정된 깊이와 카메라 포즈는 카메라 파라미터를 이용하여 포인트 클라우드로 변환되고, 포인트 클라우드는 Octree 구조의 점유 그리드를 사용하여 3D 맵으로 매핑된다. 제안된 네트워크는 합성 이미지와 Mid-Air 데이터 세트의 깊이 시퀀스를 사용하여 평가된다. 제안하는 네트워크는 이전 연구에 비해 7.69% 더 낮은 오류 값을 보여주었다.
Rithy Prak;Ji Ho Park;Sanggi Jeong;Arum Jang;Min Jae Park;Thomas H.-K. Kang;Young K. Ju
Computers and Concrete
/
제31권5호
/
pp.457-468
/
2023
Buildings, bridges, and dams are examples of civil infrastructure that play an important role in public life. These structures are prone to structural variations over time as a result of external forces that might disrupt the operation of the structures, cause structural integrity issues, and raise safety concerns for the occupants. Therefore, monitoring the state of a structure, also known as structural health monitoring (SHM), is essential. Owing to the emergence of the fourth industrial revolution, next-generation sensors, such as wireless sensors, UAVs, and video cameras, have recently been utilized to improve the quality and efficiency of building forensics. This study presents a method that uses a target-based system to estimate the dynamic displacement and its corresponding dynamic properties of structures using UAV-based video. A laboratory experiment was performed to verify the tracking technique using a shaking table to excite an SDOF specimen and comparing the results between a laser distance sensor, accelerometer, and fixed camera. Then a field test was conducted to validate the proposed framework. One target marker is placed on the specimen, and another marker is attached to the ground, which serves as a stationary reference to account for the undesired UAV movement. The results from the UAV and stationary camera displayed a root mean square (RMS) error of 2.02% for the displacement, and after post-processing the displacement data using an OMA method, the identified natural frequency and damping ratio showed significant accuracy and similarities. The findings illustrate the capabilities and reliabilities of the methodology using UAV to evaluate the dynamic properties of structures.
About 75% of vessel collision accidents are caused by human error, which causes enormous economic loss, environmental pollution, and human casualties, thus research on automatic collision avoidance of vessels is being actively conducted. In addition, vessels must comply with the COLREGs rules stipulated by IMO when performing collision avoidance with other vessels in motion. In this study, the collision risk was calculated by estimating the position and velocity of other vessels through the Probabilistic Data Association Filter (PDAF) algorithm based on RADAR sensor data. When a collision risk is detected, we propose an event-triggered Nonlinear Model Predict Control (NMPC) algorithm that geometrically creates waypoints that satisfy COLREGs and follows them. To verify the proposed algorithm, simulations through MATLAB are performed.
Background: Office workers experience neck or back pain due to poor posture, such as flexed head and forward head posture, during long-term sedentary work. Posture correction is used to reduce pain caused by poor posture and ensures proper alignment of the body. Several assistive devices have been developed to assist in maintaining an ideal posture; however, there are limitations in practical use due to vast size, unproven long-term effects or inconsistency of maintaining posture alignment. We developed a headphone and necklace posture correction system (HANPCS) for posture correction using an inertial measurement unit (IMU) sensor that provides visual or auditory feedback. Objects: To demonstrate the test-retest reliability and concurrent validity of neck and upper trunk flexion measurements using a HANPCS, compared with a three-dimensional motion analysis system (3DMAS). Methods: Twenty-nine participants were included in this study. The HANPCS was applied to each participant. The angle for each action was measured simultaneously using the HANPCS and 3DMAS. The data were analyzed using the intraclass correlation coefficient (ICC) = [3,3] with 95% confidence intervals (CIs). Results: The angular measurements of the HANPCS for neck and upper trunk flexions showed high intra- (ICC = 0.954-0.971) and inter-day (ICC = 0.865-0.937) values, standard error of measurement (SEM) values (1.05°-2.04°), and minimal detectable change (MDC) values (2.92°-5.65°). Also, the angular measurements between the HANPCS and 3DMAS had excellent ICC values (> 0.90) for all sessions, which indicates high concurrent validity. Conclusion: Our study demonstrates that the HANPCS is as accurate in measuring angle as the gold standard, 3DMAS. Therefore, the HANPCS is reliable and valid because of its angular measurement reliability and validity.
본 논문에서는 데이터의 이상을 탐지하고 예측하는 모델을 통해 VOC 저감 설비에서 실측한 데이터를 분석했다. 이상 탐지 분야에서 안정적인 성능을 보이는 USAD 모델을 이용하여 실시간 데이터의 이상을 탐지하고 이상 원인이 되는 센서를 탐색한다. 또한 자기 회귀 모델을 통해 미래의 이상치를 예측하여 이상이 발생할 시점을 예측하고 경고하는 방법을 제안한다. 실험은 VOC 저감 설비에서 실측한 데이터를 이용하여 시스템의 이상을 탐지할 수 있는지 검증하는 실험을 진행했으며 이상 탐지 실험 결과는 정밀도, 재현율, F1-점수가 각각 98.54%, 89.08%, 93.57%로 높은 성능의 탐지율을 보였다. 센서 별 학습된 모델의 성능은 8개 센서의 정밀도, 재현율, F1-점수를 평균한 결과 각각 99.64%, 99.37%, 99.63%로 높은 성능의 탐지율을 보였다. 또한, 센서 별 탐지 실험에 대한 타당성을 확인하기 위해 구한 해밍 손실은 0.0058로 안정적인 성능을 보였다. 그리고 이상 예측 실험 결과는 평균절대오차 0.0902로 안정적인 성능을 보였다.
Khan, Numan;Kim, Youjin;Lee, Doyeop;Tran, Si Van-Tien;Park, Chansik
국제학술발표논문집
/
The 8th International Conference on Construction Engineering and Project Management
/
pp.87-95
/
2020
Generally, occupational safety and particularly construction safety is an intricate phenomenon. Industry professionals have devoted vital attention to enforcing Occupational Safety and Health (OHS) from the last three decades to enhance safety management in construction. Despite the efforts of the safety professionals and government agencies, current safety management still relies on manual inspections which are infrequent, time-consuming and prone to error. Extensive research has been carried out to deal with high fatality rates confronting by the construction industry. Sensor systems, visualization-based technologies, and tracking techniques have been deployed by researchers in the last decade. Recently in the construction industry, computer vision has attracted significant attention worldwide. However, the literature revealed the narrow scope of the computer vision technology for safety management, hence, broad scope research for safety monitoring is desired to attain a complete automatic job site monitoring. With this regard, the development of a broader scope computer vision-based risk recognition system for correlation detection between the construction entities is inevitable. For this purpose, a detailed analysis has been conducted and related rules which depict the correlations (positive and negative) between the construction entities were extracted. Deep learning supported Mask R-CNN algorithm is applied to train the model. As proof of concept, a prototype is developed based on real scenarios. The proposed approach is expected to enhance the effectiveness of safety inspection and reduce the encountered burden on safety managers. It is anticipated that this approach may enable a reduction in injuries and fatalities by implementing the exact relevant safety rules and will contribute to enhance the overall safety management and monitoring performance.
재생 에너지 생성에서 중요한 역할을 하는 풍력 터빈은 작동 상태를 정확하게 평가하는 것이 에너지 생산을 극대화하고 가동 중지 시간을 최소화하는 데 매우 중요하다. 이 연구는 풍력 터빈 상태 진단을 위한 다양한 신경망 모델의 비교 분석을 수행하고 센서 측정 및 과거 터빈 데이터가 포함된 데이터 세트를 사용하여 효율성을 평가하였다. 분석을 위해 2MW 이중 여자 유도 발전기 기반 풍력 터빈 시스템(모델 HQ2000)에서 수집된 감시 제어 및 데이터 수집 데이터를 활용했다. 활성화함수, 은닉층 등을 고려하여 인공신경망, 장단기기억, 순환신경망 등 다양한 신경망 모델을 구축하였다. 대칭 평균 절대 백분율 오류는 모델의 성능을 평가하는 데 사용되었다. 평가를 바탕으로 풍력 터빈 상태 진단을 위한 신경망 모델의 상대적 효율성에 관한 결론이 도출되었다. 본 연구결과는 풍력발전기의 상태진단을 위한 모델선정의 길잡이가 되며, 고도의 신경망 기반 기법을 통한 신뢰성 및 효율성 향상에 기여하고, 향후 관련연구의 방향을 제시하는데 기여한다.
지능형 이동체 시스템 발달에 따라서, 보다 정확한 위치 정보 추정 기술에 대한 요구가 증가하고 있다. 특히, 실내에서 사용되는 이동 로봇에게 주어진 일을 정해진 위치에서 수행할 때에는 보다 정확한 위치 추정에 대한 성능을 필요로 한다. 따라서, 이 논문에서는 고정형 또는 이동형 사물에 적용 가능한 진보된 위치 추정 방법을 제안한다. 제안 방법은 미리 설치된 블루투스 비콘 신호로부터 위치 추정 결과를 칼만 필터의 관찰 신호로 사용한다. 또한, 센서의 위치와 각도에 따라서 결정되는 각 방향의 중력 가속도를 추정하기 위해서, 롤(roll)과 피치(pitch) 각도를 먼저 계산하고, 이 결과를 자기장 센서 출력과 결합하여 요(Yaw) 각도를 추정함으로써,이동체의 진행 방향을 정확히 추정한다. 이를 기반으로 이동체의 제어 입력이 되는 가속도 신호를 정확히 계산함으로써, 칼만 필터의 성능을 향상시키는 방법을 제안한다. 제안 방법의 성능은 고정 상태와 이동 상태로 나누어 평균 위치 오차를 계산하여 기존의 칼만 필터와 비교시 위치 오차를 크게 향상시킴을 확인하였다.
IoT는 관련 기술의 발전으로 인해 사용범위가 넓어졌으며 다양한 서비스의 구현을 위한 수요를 충족하기 위해 다양한 센서가 개발되고 보급되었다. 센서를 이용한 알코올 농도의 측정은 음주운전 방지에 활용할 수 있으며 이를 가능하게하기 위해서는 정확한 알코올 농도를 측정하고 스마트폰에서 서버로 안전한 전송을 보장하여야 한다. 또한 측정한 알코올 농도 값을 음주 수준을 판단하는 기준값으로 변환하는 과정이 필요하다. 본 논문에서는 센서를 사용하여 알코올 탐지기술을 적용한 음주측정기기에서 수집한 알코올 농도 정보를 보정 알고리즘을 통해 수치를 변환하고 원격지에 위치한 서버에 안전하게 전송하고 관리하는 시스템을 제안하고 구현한다. 원격지 서버와의 보안은 네트워크 계층의 SSL을 적용하여 데이터의 무결성과 기밀성을 보장하도록 하였으며 서버는 수신된 정보를 암호화하여 데이터베이스에 저장하여 추가적인 보안을 제공하도록 하였다. 알코올 농도 측정의 정확성, 통신의 효율성을 분석한 결과 에러 허용치 내에서 측정되고 전송되는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.