• 제목/요약/키워드: sensor cooling

검색결과 146건 처리시간 0.022초

Surface Profile Measuring System for Axial Fan of Cooling Towers (냉각탑용 축류팬 형상 정밀도 측정 시스템)

  • Kang Jae-Gwan;Lee Kwang-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제22권4호
    • /
    • pp.151-158
    • /
    • 2005
  • An important component of a cooling tower is an axial fan, and there happens distortion in its shape which brings significant loss of efficiency. In this paper, a surface profile measuring system for large size axial fan of cooling towers is developed. A laser sensor is used as a measuring device and aluminum profiles and stepping motors are engaged into the system as frame structure and driving devices respectively. The measuring data are compared to the design data to compute the distortion of the axial fans. Two types of errors, axial and twist errors, are used to represent the precision of axial fan distortion. Genetic algorithm is used to solve the optimization problem during computing the precision. Results are displayed three dimensionally in a solid-modeler as well as 2-D drawings to help users find it with ease.

Suggested Temperature Monitoring System for Distribution Transformers by Using Microcontroller Scheme

  • El-Gawad, Amal F. Abd
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2099-2104
    • /
    • 2015
  • The paper presents a monitoring system for the cooling of distribution transformers. The suggested system is controlled by a microcontroller scheme. The system is designed to control the oil temperature. It gives a solution to improve the cooling system by adding a number of fans especially for indoor transformers that are placed in badly-ventilated rooms. Also, the paper includes an alarm system with the possibility of tripping the transformer if it is necessary. The monitoring system consists of acquisition temperature sensor, and on-site unit. The hardware and software of the on-site unit are demonstrated with sufficient illustrations. Small prototype is constructed in the laboratory. Some laboratory experiments are carried out for examining the designed circuit by using Proteus Virtual System Modeling as well as for testing the prototype monitoring system. Concerning this research point, a study is carried out to evaluate the economic feasibility. The results are recorded and associated with many recommendations that may be valuable to electrical distribution (utility) companies.

PROTOTYPE DEVELOPMENT OF THE STAR SENSOR FOR THE KITSAT-3 (우리별 3호 STAR SENSOR 시험모델 개발)

  • 이현우;김병진;유상근;한원용
    • Journal of Astronomy and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.256-264
    • /
    • 1995
  • This report presents the development procedure and the results of a prototype star sensor which can be used as one of the attitude sensors of the KITSAT-3. The star sensor is a major attitude sensor that can determine the 3-axis attitude information, by comparing between star corrdinates in the star catalog and the measured corrdinates. The 2 dimensional CCD camera is used for measuring the star corrdinates and the DSP(Digital Signal Processor) technology is applied to the image and signal processing. Using the prototype star sensor with thermoelectri cooling technique, we have succesfully obtained the star images around 4th magnitude at Sobaeksan Astronomy Observatory minimizing night sky effect.

  • PDF

Study of Stirling Cryocooler Performance with different length of split tube (Split tube 길이변화에 따른 스터링 극저온 냉동기의 특성에 관한 연구)

  • 홍용주;박성제;고득용;김효봉;오군섭;김종학
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.37-40
    • /
    • 2001
  • A free piston and free displacer (FPFD) Stirling cryocooler for cooling infrared and cryo-sensor is currently under development at Korea Institute of Machinery & Materials. In this study, performance tests of stirling cryocooler with different length of split tube were performed to get characteristics of cryocooler. The Experimental results show the Stirling cryocooler with small volume of split tube has higher cooling power and faster response time.

  • PDF

Personalized Cooling Management System with Thermal Imaging Camera (열화상 카메라를 적용한 개인 맞춤형 냉각관리 시스템)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • 제25권4호
    • /
    • pp.782-785
    • /
    • 2021
  • In this paper, we propose a personalized cooling management system with thermal imaging camera. The proposed equipment uses a thermal imaging camera to control the amount of cold air and the system according to the difference between the user's skin temperature before and after the procedure. When the skin temperature is abnormally low, the cold air supply is cut off to prevent the possibility of a safety accident. It is economical by replacing the skin temperature sensor with a thermal imaging camera temperature measurement, and it can be visualized because the temperature can be checked with the thermal image. In addition, the proposed equipment improves the sensitivity of the sensor that measures the distance to the skin by calculating the focal length by using a dual laser pointer for the safety of a personalized cooling management system to which a thermal imaging camera is applied. In order to evaluate the performance of the proposed equipment, it was tested in an externally accredited testing institute. The first measured temperature range was -100℃~-160℃, indicating a wider temperature range than -150~-160℃(cryo generation/USA), which is the highest level currently used in the field. In addition, the error was measured to be ±3.2%~±3.5%, which showed better results than ±5%(CRYOTOP/China), which is the highest level currently used in the field. The second measured distance accuracy was measured as below ±4.0%, which was superior to ±5%(CRYOTOP/China), which is the highest level currently used in the field. Third, the nitrogen consumption was confirmed to be less than 0.15 L/min at the maximum, which was superior to the highest level of 6 L/min(POLAR BEAR/USA) currently used in the field. Therefore, it was determined that the performance of the personalized cooling management system applied with the thermal imaging camera proposed in this paper was excellent.

Thermal Characteristics of the High Frequency Motor Spindle according to the Bearing Preloads and Cooling Conditions (예압과 냉각조건에 따른 고주파 모터 내장형 주축계의 열특성)

  • Choi D. B.;Kim S. T.;Jung S. H.;Kim J. H.;Kim Y. K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.138-143
    • /
    • 2005
  • The important problem in the high speed spindles is to reduce and minimize the thermal effect by the motor and ball bearings. Thermal characteristics according to the bearing preload and hollow shaft cooling are studied for the spindle with the oil mist lubrication and high frequency motor. Temperature distribution and thermal deformation according to the spindle speed, preload and flow rate are measured by thermocouple and gap sensor. Temperature distribution and thermal deformation are analyzed by using the finite element method. The results of analysis are compared with the measured data. This paper show that the suitable preload and hollow shaft cooling are very effective to minimize the thermal effect by the motor and ball bearings. This study indicates that temperature distribution and thermal deformation of the high speed spindle system can be estimated reasonably by using the three dimensional model through the finite element method and supports thermal optimization and more effective cooling method.

  • PDF

Measurement System of Photosynthetic Photon Flux Distribution and Illumination Efficiency of LED Lamps for Plant Growth

  • Lee, Jae Su;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • 제37권5호
    • /
    • pp.314-318
    • /
    • 2012
  • Purpose: This study was conducted to develop a measurement system for determining photosynthetic photon flux (PPF) distribution and illumination efficiency of LED lamps. Methods: The system was composed of a linear moving sensor part (LMSP), a rotating part to turn the LMSP, a body assembly to support the rotating part, and a motor controller. The average PPF of the LED lamp with natural cooling and water cooling was evaluated using the measurement system. Results: The PPF of LED lamp with water cooling was 3.1-31.7% greater than that with natural cooling. Based on the measured value, PPF on the horizontal surface was predicted. Illumination efficiency of the LED lamp was slightly increased with water cooling by 3.4%, compared with natural cooling. A simulation program using MATLAB was developed to analyze the effects of the vertical distance from lighting sources to growing bed, lamp spacing, and number of LED lamps, on the PPF distribution on the horizontal surface. The uniformity of the PPF distribution of the LED lamps was fairly improved with 15 cm spacing, as compared to the 5 cm spacing. By simulation, PPF of $217.0{\pm}27.9{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was obtained at the vertical distance of 40 cm from six LED lamps with 12 cm spacing. This simulated PPF was compared to the measured one of $225.9{\pm}25.6{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. After continuous lighting of 346 days, the relative PPF of LED lamps with water cooling and natural cooling was decreased by 6.6% and 22.8%, respectively. Conclusions: From these results, it was concluded that the measurement system developed in this study was useful for determining PPF and illumination efficiency of artificial lighting sources including LED lamp.

HEN Simulation of a Controlled Fluid Flow-Based Neural Cooling Probe Used for the Treatment of Focal and Spontaneous Epilepsy

  • Mohy-Ud-Din, Zia;Woo, Sang-Hyo;Qun, Wei;Kim, Jee-Hyum;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • 제20권1호
    • /
    • pp.19-24
    • /
    • 2011
  • Brain disorders such as epilepsy is a condition that affects an estimated 2.7 million Americans, 50,000,000 worldwide, approximately 200,000 new cases of epilepsy are diagnosed each year. Of the major chronic medical conditions, epilepsy is among the least understood. Scientists are conducting research to determine appropriate treatments, such as the use of drugs, vagus nerve stimulation, brain stimulation, and Peltier chip-based focal cooling. However, brain stimulation and Peltier chip-based stimulation processes cannot effectively stop seizures. This paper presents simulation of a novel heat enchanger network(HEN) technique designed to stop seizures by using a neural cooling probe to stop focal and spontaneous seizures by cooling the brain. The designed probe was composed of a U-shaped tube through which cold fluid flowed in order to reduce the temperature of the brain. The simulation results demonstrated that the neural probe could cool a 7 $mm^2$ area of the brain when the fluid was flowing atb a velocity of 0.55 m/s. It also showed that the neural cooling probe required 23 % less energy to produce cooling when compared to the Peltier chip-based cooling system.

Optimal sensor placement for mode shapes using improved simulated annealing

  • Tong, K.H.;Bakhary, Norhisham;Kueh, A.B.H.;Yassin, A.Y. Mohd
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.389-406
    • /
    • 2014
  • Optimal sensor placement techniques play a significant role in enhancing the quality of modal data during the vibration based health monitoring of civil structures, where many degrees of freedom are available despite a limited number of sensors. The literature has shown a shift in the trends for solving such problems, from expansion or elimination approach to the employment of heuristic algorithms. Although these heuristic algorithms are capable of providing a global optimal solution, their greatest drawback is the requirement of high computational effort. Because a highly efficient optimisation method is crucial for better accuracy and wider use, this paper presents an improved simulated annealing (SA) algorithm to solve the sensor placement problem. The algorithm is developed based on the sensor locations' coordinate system to allow for the searching in additional dimensions and to increase SA's random search performance while minimising the computation efforts. The proposed method is tested on a numerical slab model that consists of two hundred sensor location candidates using three types of objective functions; the determinant of the Fisher information matrix (FIM), modal assurance criterion (MAC), and mean square error (MSE) of mode shapes. Detailed study on the effects of the sensor numbers and cooling factors on the performance of the algorithm are also investigated. The results indicate that the proposed method outperforms conventional SA and Genetic Algorithm (GA) in the search for optimal sensor placement.

A Study on Pattern Analysis of Odorous Substances with a Single Gas Sensor

  • Kim, Han-Soo;Choi, Il-Hwan;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • 제25권6호
    • /
    • pp.423-430
    • /
    • 2016
  • This study used a single metal oxide semiconductor (MOS) sensor to classify the major odorous gases hydrogen sulfide ($H_2S$), ammonia ($NH_3$) and toluene ($C_6H_5CH_3$). In order to classify these odorous substances, the voltage on the MOS sensor heater was gradually reduced in 0.5 V steps 5.0 V to examine the changes to the response by the cooling effect on the sensor as the voltage decreased. The hydrogen sulfide gas showed the highest sensitivity compared to odorless air under approximately 2.5 V and the ammonia and toluene gases showed the highest sensitivity under approximately 5.0 V. In other words, the hydrogen sulfide gas reacted better in the low temperature range of the MOS sensor, and the ammonia and toluene gases reacted better in the high-temperature range. In order to analyze the response characteristics of the MOS sensor by temperature in a pattern, a two-dimensional (2D) x-y pattern analysis was introduced to clearly classify the hydrogen sulfide, ammonia, and toluene gases. The hydrogen sulfide gas was identified by a straight line with a slope of 1.73, whereas the ammonia gas had a slope of 0.05 and the toluene gas had a slope of 0.52. Therefore, the 2D x-y pattern analysis is suggested as a new way to classify these odorous substances.