• Title/Summary/Keyword: sensor cooling

Search Result 146, Processing Time 0.02 seconds

Software Design about Integrated Fault Diagnosis for the Propulsion System of the Tracked Amphibious Assault Vehicle (궤도형 상륙돌격차량용 추진장치의 통합고장진단 S/W 설계)

  • Lee, Changkyu;Choi, Byeongho;Park, Daegon;Koo, Youngho;Shim, Sangchul;Chang, Kyogun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.457-466
    • /
    • 2021
  • This paper describes the design of model-based fault diagnosis software to apply to the propulsion system in tracked amphibious assault vehicle which consists of an engine, a transmission, a cooling system, and two waterjets. This software includes specific functions to detect the failures regarding sensor malfunctions, mechanical malfunctions, control errors, and communication errors. This software generates the proper malfunction codes which are classified as the warning and caution. In order to validate the fault diagnosis software, the manual and automatic test are performed using the test program with 32 test cases. Test results show that the designed fault diagnosis software is reliable and effective for applying to the propulsion system.

Preliminary Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Park, Chan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.102-102
    • /
    • 2014
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument onboard NEXTSat-1 which is being developed by KASI. The main scientific targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions in order to study the cosmic star formation history in local and distant universe. After the Preliminary Design Review, we have fixed major specifications of the NISS. The off-axis optical design with 15cm apertureis optimized to obtain a wide field of view ($2deg.{\times}2deg.$), while minimizing the sensitivity loss. The opto-mechanical structure of the NISS was designed to be safe enough to endure in the launching condition as well as the space environment. The tolerance analysis was performed to cover the wide wavelength range from 0.95 to $3.8{\mu}m$ and to reduce the degradation of optical performance due to thermal variation at the target temperature, 200K. The $1k{\times}1k$ infrared sensor is operated in the dewar at 80K stage. We confirmed that the NISS can be cooled down to below 200K in the nominal orbit through a radiative cooling. Here, we report the preliminary design of the NISS.

  • PDF

Individual Presence-and-Preference-Based Local Intelligent Service System and Mobile Edge Computing (개인 프레즌스-선호 기반 지능형 로컬 서비스 시스템과 모바일 엣지 컴퓨팅 환경에서의 적용 방안)

  • Kim, Kilhwan;Jang, Jin-San;Keum, Changsup;Chung, Ki-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.523-535
    • /
    • 2017
  • Local intelligent services aim at controlling local services such as cooling or lightening services in a certain local area, using Internet-of-Things (IoT) sensor data in the area. As the IoT paradigm has evolved, local intelligent services have gained increasing attention. However, most of the local intelligent service mechanism proposed so far do not directly take the users' presence and service preference information into account for controlling local services. This study proposes an individual presence-and-preference-based local service system (IPP-LISS). We present a intelligent service control algorithm and implement a prototype system of IPP-LISS. Typically, the intelligence part of IPP-LISS including the prediction models, is generated on remote server in the cloud because of their compute-intense aspect. However, this can cause huge data traffic between IoT devices and servers in the cloud. The emerging mobile edge computing technology will be a promising solution of this challenge of IPP-LISS. In this paper, we implement IPP-LISS in the cloud, and then, based on the implementation result, we discuss applying the mobile edge computing technology to the IPP-LISS application.

Development of Methane Gas Leak Detector Using Mid-infrared Ray Sensors with $3.2\;{\mu}m$ ($3.2\;{\mu}m$ 중적외선 센서를 이용한 메탄가스누출검지기의 개발)

  • Park, Gyou-Tae;Lyu, Keun-Jun;Han, Sang-In;Oh, Jeong-Seok;Kim, Ji-Yoon;Ahn, Sang-Guk;Yoon, Myung-Seop;Kwon, Jeong-Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.48-52
    • /
    • 2008
  • According to extremely industrial growth, gas facilities, equipments and chemical plants are gradually increased due to incremental demands of annual amount of gases. The safety management of gases, however, is still far from their requirements. Methane, the principal ingredient of natural gas, is inflammable and explosive and is much used in factories and houses. Therefore, these gas safety management is essential. So, we, with a program of the gas safety management, hope to develop the detection system of methane gas leak using mid-infrared ray LED and PD with $3.2\;{\mu}m$. The cryogenic cooling device is indispensible at laser but needless at LED driven on the room temperature if manufacturing optical sensor with $3.2\;{\mu}m$. It, consequently, is not only possible to implement for subminiature and portable type but also able to speedily detect methane of extremely small quantities because the $CH_4$ absorption intensity at $3.2\;{\mu}m$ is stronger than that at $1.67\;{\mu}m$. Our objective of research is to prevent gas leak accidents from occurring previously and to minimize the extent of damage from them.

  • PDF

Comparative Analysis of the Effects of Heat Island Reduction Techniques in Urban Heatwave Areas Using Drones (드론을 활용한 도시폭염지역의 열섬 저감기법 효과 비교 분석)

  • Cho, Young-Il;Yoon, Donghyeon;Shin, Jiyoung;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1985-1999
    • /
    • 2021
  • The purpose of this study is to apply urban heat island reduction techniques(green roof, cool roof, and cool pavements using heat insulation paint or blocks) recommended by the Environmental Protection Agency (EPA) to our study area and determine their actual effects through a comparative analysis between land cover objects. To this end, the area of Mugye-ri, Jangyu-myeon, Gimhae, Gyeongsangnam-do was selected as a study area, and measurements were taken using a drone DJI Matrice 300 RTK, which was equipped with a thermal infrared sensor FLIR Vue Pro R and a visible spectrum sensor H20T 1/2.3" CMOS, 12 MP. A total of nine heat maps, land cover objects (711) as a control group, and heat island reduction technique-applied land covering objects (180) were extracted every 1 hour and 30 minutes from 7:15 am to 7:15 pm on July 27. After calculating the effect values for each of the 180 objects extracted, the effects of each technique were integrated. Through the analysis based on daytime hours, the effect of reducing heat islands was found to be 4.71℃ for cool roof; 3.40℃ for green roof; and 0.43℃ and -0.85℃ for cool pavements using heat insulation paint and blocks, respectively. Comparing the effect by time period, it was found that the heat island reduction effect of the techniques was highest at 13:00, which is near the culmination hour, on the imaging date. Between 13:00 and 14:30, the efficiency of temperature reduction changed, with -8.19℃ for cool roof, -5.56℃ for green roof, and -1.78℃ and -1.57℃ for cool pavements using heat insulation paint and blocks, respectively. This study was a case study that verified the effects of urban heat island reduction techniques through the use of high-resolution images taken with drones. In the future, it is considered that it will be possible to present case studies that directly utilize micro-satellites with high-precision spatial resolution.

Analysis of Actual State of Facilities for Pleurotus eryngii Cultivation - Based on Western Gyeongnam Area - (큰느타리버섯 재배사의 실태분석 - 서부경남지역을 중심으로 -)

  • Yoon Yong Cheol;Suh Won Myung;Yu Chan
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.217-225
    • /
    • 2004
  • This study was performed to provide the basic knowledge about the mushroom cultivation facilities. Classified current status of cultivation facilities in Gyeongnam province was investigated by questionnaire. The structure of Pleurotus eryngii cultivation facilities can be classified into the simple and permanent frame type. The simple frame structures were mostly single-span type, on the other hand, the permanent frame structures were more multi-span than simple structures. And the scale of cultivation facilities was very different regardless of structural type. But as a whole, the length, width and ridge height were prevailing approximately 20.0 m, $6.6\~7.0m$ and $4.6\~5.0m$ range, respectively. The floor area was about $132\~160\;m^2$, and floor was built with concrete to protect mushrooms from various harmful infection. The roof slope of the simple and permanent type showed about $41.5^{\circ}\;and\;18.6\~28.6^{\circ}$, respectively. The width and layer number of growing bed for mushroom cultivation were around $1.2\~1.6m$, 4 layers in common, respectively. Most of year round cultivation facilities were equipped with cooler, heater, humidifier, and ventilating fan. Hot water boiler was the most commonly used heating system, the next was electric heater and then steam boiler. The industrial air conditioner has been widely used for cooling. And humidity was controlled mostly by ultra-wave or centrifuging humidifier. But some farmers has been using nozzle system for auxiliary purpose. More then $90\%$ of the mushroom house had the independent environment control system. The inside temperature was usually controlled by sensor, but humidity and $CO_2$ concentration was controlled by timer for each growing stage. The capacity of medium bottle was generally 850 cc and 1100cc, some farms used 800 cc, 950 co and 1,250 cc. Most of mushroom producted has been usually shipped to both circulating company and joint market.