• Title/Summary/Keyword: sensitivity method

Search Result 5,620, Processing Time 0.029 seconds

A New Sensitivity-Based Reliability Calculation Algorithm in the Optimal Design of Electromagnetic Devices

  • Ren, Ziyan;Zhang, Dianhai;Koh, Chang Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.331-338
    • /
    • 2013
  • A new reliability calculation method is proposed based on design sensitivity analysis by the finite element method for nonlinear performance constraints in the optimal design of electromagnetic devices. In the proposed method, the reliability of a given design is calculated by using the Monte Carlo simulation (MCS) method after approximating a constraint function to a linear one in the confidence interval with the help of its sensitivity information. The validity and numerical efficiency of the proposed sensitivity-assisted MCS method are investigated by comparing its numerical results with those obtained by using the conventional MCS method and the first-order reliability method for analytic functions and the TEAM Workshop Problem 22.

Preform Design by the Sensitivity Method (민감도법을 이용한 자유단조 공정의 예비성형체 설계)

  • 심현보;노현철;서의권
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.294-301
    • /
    • 2001
  • The sensitivity method has been applied to find perform shape that results in the desired shape after foring. As a 2D example, initial shape of specimen for the cylinder shape without barrelling after forging has been found. The method is then applied to various shapes of 3D free forging and initial shapes of the corresponding specimens after forging have been found successfully The sensitivity method is proven to be an effective and accurate tool for the preform design.

  • PDF

Consistent Displacement Load Method for Nonlinear Semi-Analytical Design Sensitivity Analysis (준해석적 비선형 설계민감도를 위한 보정변위하중법)

  • Lee, Min-Uk;Yoo, Jung-Hun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1209-1216
    • /
    • 2005
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

Design Sensitivity Analysis of Zwicker's Loudness Using Adjoint Variable Method (보조변수법을 이용한 Zwicker 라우드니스의 설계민감도)

  • Wang, Se-Myung;Kwon, Dae-Il;Kim, Chaw-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1432-1436
    • /
    • 2006
  • Feasibility of optimizing Zwicker's loudness has been shown by using MSC/NASTRAN, SYSNOISE, and a semi-analytical design sensitivity by Wang and Kang. Design sensitivity analysis of Zwicker's loudness is developed by using ANSYS, COMET, and an adjoint variable method in order to reduce computation. A numerical example shows significant reduction of computation time for design sensitivity analysis.

  • PDF

Ride Sensitivity Analysis of a Train Model with Non-linear Suspension Elements (비선형 현가요소를 가진 철도차량의 승차감 민감도 해석)

  • Tak, Tae-oh;Kim, Myung-hun
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.233-240
    • /
    • 1998
  • In this study, ride sensitivity analysis of train with non-linear suspension elements is performed. Non-linear characteristics of springs and dampers for primary and secondary suspensions of a train is parameterized. Equation of motion of the train model is derived, and using the direct differentiation method, sensitivity equations are obtained. For a nominal ride quality performance index, sensitivity analysis with respect to various design parameters regarding non-linear suspension parameters is carried out.

  • PDF

Sensitivity and Reliability Analysis of Elate (판 구조물의 감도해석 및 신뢰성해석)

  • 김지호;양영순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.57-62
    • /
    • 1991
  • For the purpose of developing the method for efficiently calculating the design sensitivity and the reliability for the complicated structure such as ship structure, the probabilistic finite element method is introduced to formulate the deterministic design sensitivity analysis method and incorporated with the second moment reliability methods such as MVFOSM, AFOSM and SORM. Also, the probabilistic design sensitivity analysis needed in the reliability-based design is performed. The reliability analysis is carried out for the initial yielding failure, in which the derivative derived in the deterministic desin sensitivity is used. The present PFEM-based reliability method shows good agreement with Monte Carlo method in terms with the variance of response and the associated probability of failure even at the first or first few iteration steps. The probabilistic design sensitivity analysis evaluates explicitly the contribution of each random variable to probability of failure. Further, the reliability index variation can be easily predicted by the variation of the mean and the variance of the random variables.

  • PDF

Optimum Design of the Process Parameter in Sheet Metal Forming with Design Sensitivity Analysis using the Direct Differentiation Approach (I) -Design Sensitivity Analysis- (직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화 (I) -설계민감도 해석 -)

  • Kim, Se-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2245-2252
    • /
    • 2002
  • Design sensitivity analysis scheme is proposed in an elasto -plastic finite element method with explicit time integration using a direct differentiation method. The direct differentiation is concerned with large deformation, the elasto-plastic constitutive relation, shell elements with reduced integration and the contact scheme. The design sensitivities with respect to the process parameter are calculated with the direct analytical differentiation of the governing equation. The sensitivity results obtained from the present theory are compared with that obtained by the finite difference method in a class of sheet metal forming problems such as hemi-spherical stretching and cylindrical cup deep-drawing. The result shows good agreement with the finite difference method and demonstrates that the preposed sensitivity calculation scheme is a pplicable in the complicated sheet metal forming analysis and design.

Shape Design Sensitivity Analysis of Two-Dimensional Thermal Conducting Solids with Multiple Domains Using the Boundary Element Method (경계요소법을 이용한 2 차원 복수 영역 열전도 고체의 형상 설계 민감도 해석)

  • 이부윤;임문혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.175-184
    • /
    • 2003
  • A method of the shape design sensitivity analysis based on the boundary integral equation formulation is presented for two-dimensional inhomogeneous thermal conducting solids with multiple domains. Shape variation of the external and interface boundary is considered. A sensitivity formula of a general performance functional is derived by taking the material derivative to the boundary integral identity and by introducing an adjoint system. In numerical analysis, state variables of the primal and adjoint systems are solved by the boundary element method using quadratic elements. Two numerical examples of a compound cylinder and a thermal diffuser are taken to show implementation of the shape design sensitivity analysis. Accuracy of the present method is verified by comparing analyzed sensitivities with those by the finite difference. As application to the shape optimization, an optimal shape of the thermal diffuser is found by incorporating the sensitivity analysis algorithm in an optimization program.

A Hybrid ON/OFF Method for Fast Solution of Electromagnetic Inverse Problems Based on Topological Sensitivity

  • Kim, Dong-Hun;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.240-245
    • /
    • 2011
  • A new hybrid ON/OFF method is presented for the fast solution of electromagnetic inverse problems in high frequency domains. The proposed method utilizes both topological sensitivity (TS) and material sensitivity (MS) to update material properties in unit design cells. MS provides smooth design space and stable convergence, while TS enables sudden changes of material distribution when MS slows down. This combination of two sensitivities enables a reduction in total computation time. The TS and MS analyses are based on a variational approach and an adjoint variable method (AVM), which permits direct calculation of both sensitivity values from field solutions of the primary and adjoint systems. Investigation of the formulations of TS and MS reveals that they have similar forms, and implementation of the hybrid ON/OFF method that uses both sensitivities can be achieved by one optimization module. The proposed method is applied to dielectric material reconstruction problems, and the results show the feasibility and effectiveness of the method.

Transient Response Analysis of a Lumped Mass System Using Sensitivity Method in Time Domain (시간영역 민감도 방법을 이용한 집중 질량 구조물의 천이응답 해석)

  • 백문열;기창두
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.217-223
    • /
    • 1997
  • This paper deals with the basic concepts of sensitivity analysis in a time domain for the transient response of a lumped mass system. Sensitivity analysis methods in thme domain for determining the effects of parameter changes on the response of a dynamic system by external excitation are presented. The parametric sensitivity of a lumped mass system in time domain can be investigated using different types of sensitivity functions, including first order standard and percentage sensitivity functions. These sensitivity functions are determined as a function of partial derivatives of system variables taken with respect to system parameters. In addition, we compared the results of the analytical method by direct method and those of numerical methods.

  • PDF