• Title/Summary/Keyword: sensitivity experiments

Search Result 740, Processing Time 0.031 seconds

CONSTRUCTION OF A ROBUST CMPEMSATION CONTROLLER

  • Hyogo, Hidekazu;Kamiya, Yuji;Shibata, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.471-476
    • /
    • 1994
  • In this paper a new controller is proposed which gives the resultant system the appointed input-output properties, low sensitivity and robust stability. The proposed controller consists of a reference model and a robust compensator. The reference model determines the input-output properties of the total system and is constructed by using the nominal model of the plant. We can design the reference model by applying design techniques which pay attention to steady robustness and no attention to sensitivity and robust stability, and need all state variables of the plant. The robust compensator is obtained as a solution of the mixed sensitivity problem in H infinity control theory. Therefore, low sensitivity and robust stability are guaranteed in the resultant system. The simulation experiments show that the proposed controller is effective and useful.

  • PDF

Output Characteristics and Sensitivity Analysis of Capacitive Type Torque Sensor (정전용량방식 토크센서의 출력특성과 감도해석)

  • Lee, Shin-Pyo;Kim, Jong-Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2590-2597
    • /
    • 2002
  • A new torque measuring apparatus adopting the basic principle of a capacitive type sensor is proposed in this article. Two plate electrodes are working as a capacitive sensor, whose capacitance varies as torque is applied. One end of each plate is connected to the torque carrying shaft. Output characteristics of the torque sensor were theoretically analyzed and its validity was investigated through experiment. Calculations and calibration experiments show that the output is nonlinear, that is, the sensitivity is very high at low torque but decreases as torque increases. The sensitivity of the proposed system is about 100 times roughly higher than that of a conventional 4-strain gauge type torque sensor.

Error Estimation for the Semi-Analytic Design Sensitivity Using the Geometric Series Expansion Method (기하급수 전개법을 이용한 준해석 민감도의 오차 분석)

  • Dan, Ho-Jin;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.262-267
    • /
    • 2003
  • Error of the geometric series expansion method for the structural sensitivity analysis is estimated. Although the semi-analytic method has several advantages, accuracy of the method prevents it from practical application. One of the promising remedies is the use of geometric series formula for the matrix inversion. Its result of the sensitivity analysis converges that of the global difference method which is known as reliable one. To reduce computational efforts and to obtain reliable results, it is important to know how many terms need to expand. In this paper, the error formula is presented and Its usefulness is illustrated through numerical experiments.

In-Process Diagnosis of Servovalve wear in Hydraulic Force Control Systems (유압실린더 힘 제어계의 인-프로세스 서보밸브 마모진단에 관한 연구)

  • Kim, S.D.;Jeon, S.H.;Chang, Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.2
    • /
    • pp.22-30
    • /
    • 2009
  • An in-process method of diagnosing the spool wear of hydraulic servovalves was explored. The diagnostic method discussed in this paper is for force-control hydraulic servo systems. The key principle used is that pressure sensitivity of a servovalve drops as the valve spool wears out so that it is possible to determine the spool condition by monitoring pressure sensitivity. A diagnostic algorithm was developed and evaluated through numerical simulation and experiments. Two major steps of diagnosis are the evaluation of null bias of the servovalve and the approximation of pressure sensitivity, both of which could be successfully done during normal operation of a servo system. The difference between a new servovalve and a worn valve could be clearly detected in-process, and the diagnostic test was found to be repeatable.

  • PDF

Structural Modification for Vehicle Interior Noise Reduction Using Vibration Response Sensitivity Analysis

  • Park, Yong-Hwa;Cheung, Wan-Sup;Park, Youn-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3E
    • /
    • pp.3-11
    • /
    • 2000
  • A structural modification technique for reducing structure-borne noise of vehicles using a sensitivity analysis is suggested. To estimate the noises generated by the vibration response, a semi structure-acoustic coupling analysis was exploited. As a result of the coupling analysis, severe noise generating positions are identified whose vibrations should be cured through structural modifications. Formulation for the sensitivity analysis of those severe vibration responses with respect to the design changes is derived to enhance the vibration response. Special attention is given in this paper to the use of the experimentally measured vibration responses in the sensitivity analysis. As a result of the proposed method, the structural modifications can be peformed accurately by using experimental data instead of using the finite element method though the higher vibration modes are considered as long as the vibration measurement and acoustic mode calculations are accurate. Effectiveness of this method was examined using an example model by experiments.

  • PDF

Hydraulic Control System Using a Feedback Linearization Controller and Disturbance Observer - Sensitivity of System Parameters -

  • Kim, Tae-hyung;Lee, Ill-yeong;Jang, Ji-seong
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.59-65
    • /
    • 2019
  • Hydraulic systems have severe nonlinearity inherently compared to other systems like electric control systems. Hence, precise modeling and analysis of the hydraulic control systems are not easy. In this study, the control performance of a hydraulic control system with a feedback linearization compensator and a disturbance observer was analyzed through experiments and numerical simulations. This study mainly focuses on the quantitative investigation of sensitivity on system uncertainties in the hydraulic control system. First, the sensitivity on the system uncertainty of the hydraulic control system with a Feedback Linearization - State Feedback Controller (FL-SFC) was quantitatively analyzed. In addition, the efficacy of a disturbance observer coupled with the FL-SFC for the hydraulic control system was verified in terms of overcoming the control performances deterioration owing to system uncertainty.

Transverse relaxation-optimized HCN experiment for tautomeric states of histidine sidechains

  • Schmidt, Holger;Himmel, Sebastian;Walter, Korvin F.A.;Klaukien, Volker;Funk, Michael;Lee, Dong-Han
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.89-95
    • /
    • 2008
  • Function of protein is frequently related with tautomeric states of histidine sidechains. Thus, several NMR experiments were developed to determine the tautomeric states of histidines. However, poor sensitivity of these experiments caused by long duration of magnetization transfer periods is unavoidable. Here, we alleviate the sensitivity of HCN experiment for determining the tautomeric states of histidine residues using TROSY principle to suppress transverse relaxation of $^{13}C$ spins during long polarization transfer delays involving $^{13}C-^{15}N$ scalar couplings. In addition, this experiment was used to assign the sidechain resonances of histidines. These assignments can be used to follow the pH-titration of histidine sidechains.

Optimization and sensitivity analysis of the humanoid robot's foot using the design of experiments (실험계획법에 의한 휴머노이드 발의 민감도 해석 및 최적화)

  • Yoon, Ji-Won;Park, Tae-Won;Jung, Sung-Pil;Park, Joong-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.933-938
    • /
    • 2007
  • These days, up-to-date humanoid robots are continuously developed. Among them, Qrio, Asimo[1,2] are famous for its unique walking technology and natural movement. These robots could show manufacturers' technological improvement and leave a good impression to the customer. In accordance with global trends, Samsung is also producing humanoid robot. The humanoid robot, however, could walk like a human compared to the industrial robot fixed in the factory. This feature could cause another dynamic effect while walking. In this paper, the robot's feet were examined to find out parameters that affect stability of the humanoid robot's feet. With the sensitivity analysis, the optimization procedure in design of experiments finds the most suitable performance of robot. Maximum deflection of the frame upon various cases was minimized, and rubber coefficients for shock absorption were optimized.

  • PDF

A Study on a Capacitance Displacement Sensor for the Ultraprecision Measurement (초정밀 측정용 정전용량 변위센서에 관한 연구)

  • An, Hyung-Jun;Jung, Yoon;Jung, Sung-Chun;Jang, In-Bae;Han, Dong-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.291-295
    • /
    • 1996
  • This paper discusses several design factors of a capacitance displacement sensor with a numerical method and several experiments and describes guide lines of the design of this type sensor. We introduce the charge density method for the analysis of this type sensor, which has feasible accuracy and efficiency. The analysis of this type sensor with the charge density method agrees with displacement sensitivity experiments of a circular plate capacitance sensor with the sensor amp based In the charge transfer principle.

  • PDF

Confidence region of identified parameters and optimal sensor locations based on sensitivity analysis

  • Kurita, Tetsushi;Matsui, Kunihito
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.117-134
    • /
    • 2002
  • This paper presents a computational method for a confidence region of identified parameters which are affected by measurement noise and error contained in prescribed parameters. The method is based on sensitivities of the identified parameters with respect to model parameter error and measurement noise along with the law of error propagation. By conducting numerical experiments on simple models, it is confirmed that the confidence region coincides well with the results of numerical experiments. Furthermore, the optimum arrangement of sensor locations is evaluated when uncertainty exists in prescribed parameters, based on the concept that square sum of coefficients of variations of identified results attains minimum. Good agreement of the theoretical results with those of numerical simulation confirmed validity of the theory.