• Title/Summary/Keyword: sensitivity element

Search Result 1,004, Processing Time 0.026 seconds

Shock analysis of a new ultrasonic motor subjected to half-sine acceleration pulses

  • Hou, Xiaoyan;Lee, Heow Pueh;Ong, Chong Jin;Lim, Siak Piang
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.357-370
    • /
    • 2016
  • This paper aims to examine the dynamic response of a newly designed ultrasonic motor under half-sine shock impulses. Impact shock was applied to the motor along x, y or z axis respectively with different pulse widths to check the sensitivity of the motor to the shocks in different directions. Finite Element Analysis (FEA) with the ANSYS software was conducted to obtain the relative displacement of a key point of the motor. Numerical results show that the maximum relative displacement is of micro meter level and the maximum stress is five orders smaller than the Young's modulus of the piezo material, which proves the robustness of the motor.

Stabilization of pressure solutions in four-node quadrilateral elements

  • Lee, Sang-Ho;Kim, Sang-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.711-725
    • /
    • 1998
  • Mixed finite element formulations for incompressible materials show pressure oscillations or pressure modes in four-node quadrilateral elements. The criterion for the stability in the pressure solution is the so-called Babu$\check{s}$ka-Brezzi stability condition, and the four-node elements based on mixed variational principles do not appear to satisfy this condition. In this study, a pressure continuity residual based on the pressure discontinuity at element edges proposed by Hughes and Franca is used to study the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements. Also, a solid mechanics problem is presented by which the stability of mixed elements can be studied. It is shown that the pressure solutions, although stable, are shown to exhibit sensitivity to the stabilization parameters.

A Fabrication of PVDF Electret Detecting Infrasound (초저주파 검출을 위한 PVDF 일렉트렛트의 제작)

  • Park, Y.P.;Park, S.H.;Hong, J.W.;Lee, S.B.;Lee, J.U.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.367-369
    • /
    • 1989
  • An infrasonic wide band transducer fabricated by polyvinylidenefluoride[PVDF] is studied experimentally. The sensitivity of transducer is fixed -53[dB] at frequency range from $10^{-2}$[Hz] to 2[Hz] and fixed -42[dB] range from 10[Hz] to 400[Hz] respectively. The resonance frequency of the element is 14[Hz], which is accord with the mechanical resonance frequency 25.5 [Hz]. We conjecture that the element is applicable to acoustics, communication system,seismological observation and other similiar fields.

  • PDF

Design of the acoustic element and case for the piezoelectric acoustic transducer (압전형 음향변환기의 음향소자 및 케이스의 설계)

  • Kim, Hyun-Chool;Go, Young-Jun;Nam, Hyo-Duk;Chang, Ho-Gyeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.294-297
    • /
    • 2000
  • 본 연구에서는 압전형 음향변환기를 제작하기 위한 금속과 세라믹스로 적층된 원형의 압전음향소자와 음향변환기 케이스를 설계하였다. 먼저 음향소자인 복합원형평판의 진동운동 방정식을 세우고 그 진동모드를 알아보았다. 음향소자의 세라믹스는 두께 1 mm, 지름 10 mm의 PZT(IV)를 사용하였고, 금속판의 지름과 두께를 다양하게 변화시키면서 음향소자의 공진주파수를 계산하고, 각각의 금속판에 따른 감도지수의 변화를 계산하였다. 설계하고자 하는 음향소자의 공진주파수를 200 KHz로 청하고, 위의 계산을 통하여 음향변환소자에 가장 적합한 금속진동판을 찾아보았다. 음향변환기의 복합원형평판으로 이루어진 음향소자의 물리적 변화에 따른 공진주파수와 감도지수를 구하고 음향변환기 케이스의 공진주파수를 계산하여 압전형 음향변환기에 알맞은 금속진동판과 음향변환기 케이스를 알아보았다.

  • PDF

On Long Wave Induced by a Sub-sea Landslide Using a 2D Numerical Wave Tank

  • Koo, Weon-Cheol;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2007
  • A long wave induced by a Gaussian-shape submarine landslide is simulated by a 2D fully nonlinear numerical wave tank (NWT). The NWT is based on the boundary element method and the mixed Eulerian/Lagrangian approach. Using the NWT, physical characteristics of land-slide tsunami, including wave generation, propagation, particle kinematics, hydrodynamic pressure, run-up and depression, are simulated for the early stage of long wave generation and propagation. Various sliding mass heights are applied to the developed model for a systematic sensitivity analysis. In particular, the fully nonlinear NWT results are compared with linear results (exact body-boundary conditions with linear free-surface conditions) to identify the nonlinear effects in the respective cases.

Estimating Tensile Force of Hangers in Suspension Bridges Using SI Technique (SI 기법을 이용한 현수교 행어케이블의 장력 추정)

  • Park Tae-Hyo;Moon Seok-Yong;Kim Byeong-Hwa
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.786-793
    • /
    • 2006
  • For the purpose of developing a vibration-based tension force evaluation procedure for hangers in suspension bridges, a 3D finite element model of hangers is constructed in this paper. With the developed finite element formulation, a frequency-based sensitivity-updating algorithm is applied to identify the target cable system the proposed method is also able to identify the flexural rigidity. the axial rigidity, and the torsion rigidity of a cable. For a field application, a vibration test on hangers of the Yong Jong Grand Suspension Bridge is carried out and the collected data is used to verify the proposed method.

  • PDF

Crash Performance Evaluation of Hydro-formed Automotive DP-Steel Tube Considering Welding Heat Effects (용접부의 영향을 고려한 하이드로포밍된 자동차용 DP강관의 충돌 특성 평가)

  • Chung, K.H.;Kwon, H.S.;Park, S.H.;Ro, D.S.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.568-573
    • /
    • 2006
  • In order to numerically evaluate automotive hydro-formed DP-steel tubes on crash performance considering welding heat effects, the finite element simulations of crash behavior were performed for hydro-formed tubes with and without heat treatment effects. This work involves the mechanical characterization of the base material and the HAG-welded zone as well as finite element simulations of the crash test of hydro-formed tubes with welded brackets and hydro-forming of tubes. The welding heat effects on the crash performance are evaluated in efforts to improve the process optimization procedure of the engine cradle in the design stage. In particular, FEM simulations on indentations have been performed and experimentally verified for material properties of weld zone and heat affected zone.

Effects of Pounding at Expansion Joints of Concrete Bridges

  • Kim, Jong-In;Kim, Sang-Hoon
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • This paper presents the results of a study on the effects of pounding at expansion joints of concrete bridges under earthquake ground motions. An engineering approach, rather than continuum mechanics, is emphasized. First, the sensitivity analysis of the gap element stiffness is performed. Second, usefulness of the analysis method for simulation of pounding phenomena is demonstrated. Third, the effects of pounding on the ductility demands measured in terms of the rotation of column ends are investigated. Two-dimensional FE analysis using a bilinear hysterestic model for bridge substructure joints and a nonlinear gap element for the expansion joint is performed on a realistic bridge with an expansion joint. Effects of the primary factors on the ductility demand such as gap sizes and characteristics of earthquake ground motion are investigated through a parametric study. The major conclusions are that pounding effect is generally negligible on the ductility demand for wide practical ranges of gap size and peak ground acceleration, but is potentially significant at the locations of impact.

  • PDF

Ultimate Strength Analysis of Ring-stiffened Cylinders Using Commercial Softwares(II) (상용소프트웨어를 이용한 원환보강 원통의 최종강도 해석(II))

  • 박치모;이승훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.36-40
    • /
    • 2002
  • Despite the frequent use of ring-stiffened cylinders as a submarine pressure hull or members of various types of offshore structure, their ultimate strength analysis methods have not been well established because of their complex structural characteristics. This paper has established the method how to use commercial softwares based on the finite element method to implement the ultimate strength analysis of ring-stiffened cylinders covering both types of initial imperfection, i.e. initial deformation and initial stress by combining two separately offered functions of common commercial finite element softwares, linear elastic buckling analysis and nonlinear stress analysis. Developed method was applied to one of the world-widely used commercial softwares. ABAQUS for the analysis of ring stiffened cylinders. This paper ends with some useful information about the imperfection sensitivity of ultimate strength ring stiffened cylinders.

Free transverse vibration of shear deformable super-elliptical plates

  • Altekin, Murat
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.307-331
    • /
    • 2017
  • Free transverse vibration of shear deformable super-elliptical plates with uniform thickness was studied based on Mindlin plate theory using finite element method. Quadrilateral isoparametric elements were used in the paper. Sensitivity analysis was made to determine the influence of the thickness, the aspect ratio, and the shape of the plate on the natural frequency. Accuracy of the results computed in the current study was validated by comparing them with the solutions available in the literature. The results reveal that the frequencies of clamped super-elliptical plates lie in the range bounded by elliptical and rectangular plates irrespective of the aspect ratio, and furthermore, the frequency decreases if the super-elliptical power increases. A similar trend was observed for simply supported plates with high aspect ratio. The free vibration response for the first and the second symmetric-antisymmetric (SA) modes were found to be different for high aspect ratio. The results reveal that using insufficient number of degrees of freedom results in finding a totally different relation between the super-elliptical power and the frequency.