• Title/Summary/Keyword: sensitive detection

Search Result 1,717, Processing Time 0.025 seconds

Development of loop-mediated isothermal amplification method for the rapid and sensitive detection of bovine tuberculosis in Korea native cattle (한우 결핵의 신속 감별진단을 위한 등온증폭법 개발)

  • Hwang, Eun-Suk;Lee, Tae-Uk;Jung, Dae-Young;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2011
  • Loop-mediated isothermal amplification (LAMP) was developed to detect Mycobacterium tuberculosis complex (MTC) and non-tuberculous mycobacterium (NTM) genomic DNA in blood samples of Korea native cattle. A set of four primers, two outer and two inner, were designed from M. bovis and M. avium genomic DNA targeting the IS6110 and 16S rRNA gene, respectively. Based on 85 Intradermal Tuberculin Test (ITT) positive blood sample and using conventional PCR and LAMP, the agreement quotient (kappa), which measures agreement beyond chance were 0.93 (conventional PCR) and 0.97 (LAMP), respectively. The detection limit of the LAMP method was $2.0{\times}10^2$ copy/ml M. bovis and M. avium cells, compared to $2.0{\times}10^3$ copy/ml M. bovis and M. avium cells for conventional PCR. These results suggest that the LAMP is a powerful tool for rapid, sensitive, and practical detection of MTC and NTM in blood samples of Korea native cattle.

Ultra-Sensitive Analysis of Microcystin LR Using Microchip Based Detection System

  • Pyo, Dong-Jin;Huang, Yan;Kim, Young-Min;Hahn, Jong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.939-942
    • /
    • 2005
  • For the detection of cyanobacterial toxin, an Enzyme-linked immunosorbent assay (ELISA) was integrated into a PDMS microchip. The conjugates of microcystin-LR (MCLR) and keyhole limpet hemocyanin (KLH) were adsorbed on the surface of polystyrene beads and these MCLR-KLH polystyrene beads were introduced into a microchamber. MCLR on the surface of polystyrene beads reacted with horseradish peroxides (HRP) conjugated anti-MCLR monoclonal antibody (mAb) which had a competitive reaction with MCLR in water sample. After the enzyme substrate 3,3,5,5-tetramethyl benzidine (TMB) was injected into the chamber and catalyzed by HRP, the color change was detected with a liquid-cord waveguide. This integration shortened the conventional ELISA analysis time from several hours to about 30 min with only 4.2 $\mu$L MCLR sample consuming which was useful for the environmental analysis. More over, troublesome operations required for ELISA could be replaced by simple operations. The microchip based detection system showed a good sensitivity of 0.05 $\mu$g/L and maintained good reliability through its quantitative range with low coefficients of variation (2.5-10.5%).

Highly Sensitive and Naked Eye Dual-readout Method for ʟ-Cysteine Detection Based on the NSET of Fluorophore Functionalized Gold Nanoparticles

  • Fu, Xin;Liu, Yuan;Wu, Zhitao;Zhang, He
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1159-1164
    • /
    • 2014
  • A simple, highly sensitive and selective method based on the rhodamine B-covered gold nanoparticle with dual-readout (colorimetric and fluorometric) detection for $\small{L}$-cysteine is proposed. A mechanism is that citrate-stabilized AuNPs were modified with RB by electrostatic interaction, which enables the nanometal surface energy transfer (NSET) from the RB to the AuNPs, quenching the fluorescence. In the presence of $\small{L}$-cysteine, it was used as a competitor in the NSET by the strongly Au-S bonding to release RB from the Au surface and recover the fluorescence, and the red-to-purple color change quickly, which was monitored simply by the naked eye. Under the optimum conditions, the detection limit is as low as 10 nM. The method possessed the advantages of simplicity, rapidity and sensitivity at the same time. The method was also successfully applied to the determination of $\small{L}$-cysteine in human urine samples, and the results were satisfying.

Real-time Detection of Trace Copper in Brain and Kidney of Fish for Medical Diagnosis

  • Yang, Young Kyun;Pack, Eun Chul;Lee, Seung Ha;Yoo, Hai-Soo;Choi, Dal Woong;Ly, Suw Young
    • Toxicological Research
    • /
    • v.30 no.4
    • /
    • pp.311-316
    • /
    • 2014
  • For the detection of trace copper to be used in medical diagnosis, a sensitive handmade carbon nanotube paste electrode (PE) was developed using voltammetry. Analytical optimized conditions were found at 0.05 V anodic peak current. In the same conditions, various common electrodes were compared using stripping voltammetry, and the PE was found to be more sharply sensitive than other common electrodes. At optimum conditions, the working ranges of $3{\sim}19{\mu}gL^{-1}$ were obtained. The relative standard deviation of $70.0{\mu}gL^{-1}$ was determined to be 0.117% (n = 15), and the detection limit (S/N) was found to be $0.6{\mu}gL^{-1}$ ($9.4{\times}10^{-9}M$). The results were applied in detecting copper traces in the kidney and the brain cells of fish.

Development of a Quantitative Real-time Nucleic Acid Sequence based Amplification (NASBA) Assay for Early Detection of Apple scar skin viroid

  • Heo, Seong;Kim, Hyun Ran;Lee, Hee Jae
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.164-171
    • /
    • 2019
  • An assay for detecting Apple scar skin viroid (ASSVd) was developed based on nucleic acid sequence based amplification (NASBA) in combination with realtime detection during the amplification process using molecular beacon. The ASSVd specific primers for amplification of the viroid RNA and molecular beacon for detecting the viroid were designed based on highly conserved regions of several ASSVd sequences including Korean isolate. The assay had a detection range of $1{\times}10^4$ to $1{\times}10^{12}$ ASSVd RNA $copies/{\mu}l$ with reproducibility and precision. Following the construction of standard curves based on time to positive (TTP) value for the serial dilutions ranging from $1{\times}10^7$ to $1{\times}10^{12}$ copies of the recombinant plasmid, a standard regression line was constructed by plotting the TTP values versus the logarithm of the starting ASSVd RNA copy number of 10-fold dilutions each. Compared to the established RT-PCR methods, our method was more sensitive for detecting ASSVd. The real-time quantitative NASBA method will be fast, sensitive, and reliable for routine diagnosis and selection of viroid-free stock materials. Furthermore, real-time quantitative NASBA may be especially useful for detecting low levels in apple trees with early viroid-infection stage and for monitoring the influence on tree growth.

Establishment of Quantitative Analysis Method for Genetically Modified Maize Using a Reference Plasmid and Novel Primers

  • Moon, Gi-Seong;Shin, Weon-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.4
    • /
    • pp.274-279
    • /
    • 2012
  • For the quantitative analysis of genetically modified (GM) maize in processed foods, primer sets and probes based on the 35S promoter (p35S), nopaline synthase terminator (tNOS), p35S-hsp70 intron, and zSSIIb gene encoding starch synthase II for intrinsic control were designed. Polymerase chain reaction (PCR) products (80~101 bp) were specifically amplified and the primer sets targeting the smaller regions (80 or 81 bp) were more sensitive than those targeting the larger regions (94 or 101 bp). Particularly, the primer set 35F1-R1 for p35S targeting 81 bp of sequence was even more sensitive than that targeting 101 bp of sequence by a 3-log scale. The target DNA fragments were also specifically amplified from all GM labeled food samples except for one item we tested when 35F1-R1 primer set was applied. A reference plasmid pGMmaize (3 kb) including the smaller PCR products for p35S, tNOS, p35S-hsp70 intron, and the zSSIIb gene was constructed for real-time PCR (RT-PCR). The linearity of standard curves was confirmed by using diluents ranging from $2{\times}10^1{\sim}10^5$ copies of pGMmaize and the $R^2$ values ranged from 0.999~1.000. In the RT-PCR, the detection limit using the novel primer/probe sets was 5 pg of genomic DNA from MON810 line indicating that the primer sets targeting the smaller regions (80 or 81 bp) could be used for highly sensitive detection of foreign DNA fragments from GM maize in processed foods.

Sensitive and Rapid Detection of Giardia lamblia Infection in Pet Dogs using Loop-Mediated Isothermal Amplification

  • Li, Jie;Wang, Peiyuan;Zhang, Aiguo;Zhang, Ping;Alsarakibi, Muhamd;Li, Guoqing
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.2
    • /
    • pp.237-241
    • /
    • 2013
  • Giardia lamblia is recognized as one of the most prevalent parasites in dogs. The present study aimed to establish a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of G. lamblia from dogs. The fecal samples were collected and prepared for microscopic analysis, and then the genomic DNA was extracted directly from purified cysts. The concentration of DNA samples of G. lamblia were diluted by 10-fold serially ranging from $10^{-1}$ to $10^{-5}ng/{\mu}l$ for LAMP and PCR assays. The LAMP assay allows the amplification to be finished within 60 min under isothermal conditions of $63^{\circ}C$ by employing 6 oligonucleotide primers designed based on G. lamblia elongation factor 1 alpha ($EF1{\alpha}$) gene sequence. Our tests showed that the specific amplification products were obtained only with G. lamblia, while no amplification products were detected with DNA of other related protozoans. Sensitivity evaluation indicated that the LAMP assay was sensitive 10 times more than PCR. It is concluded that LAMP is a rapid, highly sensitive and specific DNA amplification technique for detection of G. lamblia, which has implications for effective control and prevention of giardiasis.

Dimethylnitrosamine-Induced Reduction in the Level of Poly-ADP-Ribosylation of Histone Proteins of Blood Lymphocytes - a Sensitive and Reliable Biomarker for Early Detection of Cancer

  • Kma, Lakhan;Sharan, Rajeshwar Nath
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6429-6436
    • /
    • 2014
  • Poly-ADP-ribosylation (PAR) is a post-translational modification of mainly chromosomal proteins. It is known to be strongly involved in several molecular events, including nucleosome-remodelling and carcinogenesis. In this investigation, it was attempted to evaluate PAR level as a reliable biomarker for early detection of cancer in blood lymphocyte histones. PAR of isolated histone proteins was monitored in normal and dimethylnitrosamine (DMN)-exposed mice tissues using a novel ELISA-based immuno-probe assay developed in our laboratory. An inverse relationship was found between the level of PAR and period of DMN exposure in various histone proteins of blood lymphocytes and spleen cells. With the increase in the DMN exposure period, there was reduction in the PAR level of individual histones in both cases. It was also observed that the decrease in the level of PAR of histones resulted in progressive relaxation of genomic DNA, perhaps triggering activation of genes that are involved in initiation of transformation. The observed effect of carcinogen on the PAR of blood lymphocyte histones provided us with a handy tool for monitoring biochemical or physiological status of individuals exposed to carcinogens without obtaining biopsies of cancerous tissues, which involves several medical and ethical issues. Obtaining blood from any patient and separating blood lymphocytes are routine medical practices involving virtually no medical intervention, post-procedure medical care or trauma to a patient. Moreover, the immuno-probe assay is very simple, sensitive, reliable and cost-effective. Therefore, combined with the ease of preparation of blood lymphocytes and the simplicity of the technique, immuno-probe assay of PAR has the potential to be applied for mass screening of cancer. It appears to be a promising step in the ultimate goal of making cancer detection simple, sensitive and reliable in the near future.

Detection of Salmonella species by polymerase chain reaction (Polymerase chain reaction에 의한 Salmonella 속균의 검출)

  • Park, Doo-hee;Kim, Won-yong;Kim, Chul-joong;Mah, Jum-sool
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.1
    • /
    • pp.115-125
    • /
    • 1994
  • In this study, we try to establish the rapid and specific detection system for Salmonella species. The PhoE gene of Salmonella species was amplified with two specific primers, ST5 and ST8c, using PCR. The probe prepared from the amplified PhoE gene was sequenced and applied for Southern blot analysis. After PCR with ST5 and ST8c primers for PhoE gene, DNA bands of expected size(365bp) from 7 different Salmonella species were detected, but not from 12 enterobacteriaceae and 3 gram positive bacteria. PCR was highly sensitive to detect up to 10fg of purified DNA template and to identify Salmonella species with only 320 heat-lysed bacterial cells. The inhibition of PCR amplification from stool specimen was occurred with 50-fold dilution but disappeared over 100 fold dilution of samples. It was confirmed that the PhoE genes were amplified and cloned with over 97% nacleotide sequence homology of PCR products compared with that of S. typhfmurium LT2. The DNA probe derived from S. typhimurium TA 3,000 showed highly specific and sensitive reaction with PCR products of all tested Salmonella species. These results indicate that PCR was rapid and sensitive detection method for Salmonella species and DNA probe prepared from S. typhimurium TA 3,000 was specific to identify PCR products of different Salmonella species.

  • PDF

Detection of a Thermal Stable-Soluble Protein (TSSP) as a Marker of Peanut Adulteration Using a Highly Sensitive Indirect Enzyme-Linked Immunosorbent Assay based on Monoclonal Antibodies

  • Sol-A Kim;Sazzad Hossen Toushik;Jeong-Eun Lee;Won-Bo Shim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1170-1178
    • /
    • 2023
  • Food allergy represents a severe problem for many societies, including sensitive populations, academies, health authorities, and the food industry. Peanut allergy occupies a special place in the food allergy spectrum. To prevent consumption by consumers suffering from a peanut allergy, a rapid and sensitive detection method is essential to identify unintended peanut adulteration in processed foods. In this study, we produced four monoclonal antibodies (MAbs; RO 3A1-12, PB 4C12-10, PB 5F9-23, and PB 6G4-30) specific to thermo-stable and soluble proteins (TSSPs) of peanut and developed an enzyme-linked immunosorbent assay (ELISA) based on the MAbs. Among them, PB 5F9-23 MAb was firmly bound to Ara h 1, and other MAbs strongly reacted to Ara h 3 in the Western blot analysis. An antibody cocktail solution of the MAbs was used to enhance the sensitivity of an indirect ELISA, and the limit of detection of the indirect ELISA based on the antibody cocktail solution was 1 ng/ml and improved compared to the indirect ELISA based on the single MAb (11 ng/ml). The cross-reaction analysis revealed the high specificity of developed MAbs to peanut TSSPs without cross-reaction to other food allergens, including nuts. Subsequently, analyzing processed foods by indirect ELISA, all foods labeled as containing peanuts in the product description were confirmed to be positive. The results indicate that the developed antibodies exhibit high specificity and sensitivity to peanuts and can be used as bio-receptors in immunoassays or biosensors to detect intentional or unintentional adulteration of peanuts in processed foods, particularly heat-processed foods.