DOI QR코드

DOI QR Code

Real-time Detection of Trace Copper in Brain and Kidney of Fish for Medical Diagnosis

  • Yang, Young Kyun (Department of Basic Education, Seoul National University of Technology) ;
  • Pack, Eun Chul (Department of Public Health Science, Graduate School, Korea University) ;
  • Lee, Seung Ha (Department of Public Health Science, Graduate School, Korea University) ;
  • Yoo, Hai-Soo (Korea Ocean R&D Institute) ;
  • Choi, Dal Woong (Department of Public Health Science, Graduate School, Korea University) ;
  • Ly, Suw Young (Biosensor Research Institute)
  • Received : 2014.11.12
  • Accepted : 2014.12.26
  • Published : 2014.12.31

Abstract

For the detection of trace copper to be used in medical diagnosis, a sensitive handmade carbon nanotube paste electrode (PE) was developed using voltammetry. Analytical optimized conditions were found at 0.05 V anodic peak current. In the same conditions, various common electrodes were compared using stripping voltammetry, and the PE was found to be more sharply sensitive than other common electrodes. At optimum conditions, the working ranges of $3{\sim}19{\mu}gL^{-1}$ were obtained. The relative standard deviation of $70.0{\mu}gL^{-1}$ was determined to be 0.117% (n = 15), and the detection limit (S/N) was found to be $0.6{\mu}gL^{-1}$ ($9.4{\times}10^{-9}M$). The results were applied in detecting copper traces in the kidney and the brain cells of fish.

Keywords

References

  1. Haeffner, F., Smith, D.G., Barnham, K.J. and A.I. (2005) Model studies of cholesterol and ascorbate oxidation by copper complexes: relevance to Alzheimer's disease beta-amyloid metallochemistry. J. Inorg. Biochem., 99, 2403-2422. https://doi.org/10.1016/j.jinorgbio.2005.09.011
  2. Miller, L.M., Wang, Q., Telivala, T.P., Smith, R.J., Lanzirotti, A. and Miklossy, J. (2006) Synchrotron-based infrared and Xray imaging shows focalized accumulation of Cu and Zn colocalized with beta-amyloid deposits in Alzheimer's disease. J. Struct. Biol., 155, 30-37. https://doi.org/10.1016/j.jsb.2005.09.004
  3. Xu, J., Yang, L., Wnag, Z., Dong, G., Huang, J. and Wang, Y. (2006) Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere, 62, 602-607. https://doi.org/10.1016/j.chemosphere.2005.05.050
  4. Leotsinidis, M., Alexopoulos, A. and Kostopoulou-Farri, E. (2005) Toxic and essential trace elements in human milk from Greek lactating women: association with dietary habits and other factors. Chemosphere, 61, 238-247. https://doi.org/10.1016/j.chemosphere.2005.01.084
  5. De la Cruz, D., Cruz, A., Arteaga, M., Castillo, L. and Tovalin, H. (2005) Blood copper levels in Mexican users of the T380A IUD. Contraception, 72, 122-125. https://doi.org/10.1016/j.contraception.2005.02.009
  6. Liu, P., Yao, Y.N., Wu, S.D., Dong, H.J., Feng, G.C. and Yuan, X.Y. (2005) The efficacy of deferiprone on tissues aluminum removal and copper, zinc, manganese level in rabbits. J. Inorg. Biochem., 99, 1733-1737. https://doi.org/10.1016/j.jinorgbio.2005.06.002
  7. Dias, L.F., Miranda, G.R., Saint Pierre, T.D., Maia, S.M., Frescura, V.L.A. and Curtius, A.J. (2005) Method development for the determination of cadmium, copper, lead, selenium and thallium in sediments by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution calibration. Spectrochim. Acta Part B, 60, 117-124. https://doi.org/10.1016/j.sab.2004.11.005
  8. Perring, L., Andrey, D., Basic-Dvorzak, M. and Hammer, D. (2005) Rapid quantification of iron, copper and zinc in food premixes using energy dispersive X-ray fluorescence. J. Food Compos. Anal., 18, 655-663. https://doi.org/10.1016/j.jfca.2004.06.011
  9. Boswell, C.A., McQuade, P., Weisman, G.R., Wong, E.H. and Anderson, C.J. (2005) Optimization of labeling and metabolite analysis of copper-64-labeled azamacrocyclic chelators by radio-LC-MS. Nucl. Med. Biol., 32, 29-38. https://doi.org/10.1016/j.nucmedbio.2004.09.004
  10. Lara, R., Cerutti, S., Salonia, J.A., Olsina, R.A. and Martinez, L.D. (2005) Trace element determination of Argentine wines using ETAAS and USN-ICP-OES. Food Chem. Toxicol., 43, 293-297. https://doi.org/10.1016/j.fct.2004.10.004
  11. Ly, S.Y., Song, S.S., Kim, S.K., Jung, Y.S. and Lee, C.H. (2006) Determination of Ge(IV) in rice in a mercury-coated glassy carbon electrode in the presence of catechol. Food Chem., 95, 337-343. https://doi.org/10.1016/j.foodchem.2005.02.029
  12. Ly, S.Y., Chae, J.I., Jung, Y.S., Jung, W.W., Lee, H.J. and Lee, S.H. (2004) Electrochemical detection of ascorbic acid (vitamin C) using a glassy carbon electrode. Nahrung, 48, 201-204. https://doi.org/10.1002/food.200300394
  13. Wang, J., Lu, J., Ly, S.Y., Vuki, M., Tian, B., Adeniyi, W.K. and Armendariz, R.A. (2000) Lab-on-a-Cable for electrochemical monitoring of phenolic contaminants. Anal. Chem., 72, 2659-2663. https://doi.org/10.1021/ac991054y
  14. van Staden, J.F. and Matoetoe, M.C. (2000) Simultaneous determination of copper, lead, cadmium and zinc using differential pulse anodic stripping voltammetry in a flow system. Anal. Chim. Acta, 411, 201-207. https://doi.org/10.1016/S0003-2670(00)00785-6
  15. Zen, J.M., Wang, H.F., Kumar, A.S., Yang, H.H. and Dharuman, V. (2000) Preconcentration and electroanalysis of Copper(II) in ammoniacal medium on nontronite/cellulose acetate modified electrodes. Electroanalysis, 14, 99-105.
  16. Baldo, M.A., Daniele, S. and Mazzocchin, G.A. (1998) A study on the suitability of carbon disk microelectrodes for trace analysis of lead and copper by ASV. Electroanalysis, 10, 410-416. https://doi.org/10.1002/(SICI)1521-4109(199805)10:6<410::AID-ELAN410>3.0.CO;2-A
  17. Ruiperez, J., Mendiola, M.A, Sevilla, M.T., Procopio, J.R. and Hernandez, L. (2002) Application of a macrocyclic thiohydrazone modified carbon paste electrode to copper speciation in water samples. Electroanalysis, 14, 532-539. https://doi.org/10.1002/1521-4109(200204)14:7/8<532::AID-ELAN532>3.0.CO;2-#
  18. Etienne, M., Bessiere, J. and Walcarius, A. (2001) Voltammetric detection of copper(II) at a carbon paste electrode containing an organically modified silica. Sens. Actuators B, 76, 531-538. https://doi.org/10.1016/S0925-4005(01)00614-1
  19. Viana, M.M.O., da Silva, M.P., Agraz, R., Procopio, J.R., Sevilla, M.T. and Hernandez, L. (1999) Comparison of two kinetic approaches for copper speciation using ion-exchange columns and ion-exchange modified carbon paste electrodes. Anal. Chim. Acta, 382, 178-188.
  20. Alemu, H. and Chandravanshi, B.S. (1998) Differential pulse anodic stripping voltammetric determination of copper(II) with N-phenylcinnamohydroxamic acid modified carbon paste electrodes. Anal. Chim. Acta, 368, 165-173. https://doi.org/10.1016/S0003-2670(98)00019-1
  21. Locatelli, C. and Torsi, G. (1999) Cathodic and anodic stripping voltammetry: simultaneous determination of As-Se and Cu-Pb-Cd-Zn in the case of very high concentration ratios. Talanta, 50, 1079-1088. https://doi.org/10.1016/S0039-9140(99)00213-1
  22. Pournaghi-Azar, M.H. and Ramazani, M.R. (2002) Selective determination of trace copper by extraction-anodic stripping voltammetry of copper(II) acetylacetonate in nonaqueous media. Electroanalysis, 14, 1203-1208. https://doi.org/10.1002/1521-4109(200209)14:17<1203::AID-ELAN1203>3.0.CO;2-9
  23. Yang, W., Hibbert, D.B. and Gooding, J.J. (2001) Characterization of L-cysteine monolayers for copper chemosensors on gold electrode. J. Electroanal. Chem., 516, 10-16. https://doi.org/10.1016/S0022-0728(01)00649-0
  24. Wang, J., Hocevar, S.B. and Ogorevc, B. (2004) Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6- trinitrotoluene. Electrochem. Commun., 6, 176-179. https://doi.org/10.1016/j.elecom.2003.11.010
  25. Wang, J. and Musameh, M. (2004) Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes. Anal. Chim. Acta, 511, 33-36. https://doi.org/10.1016/j.aca.2004.01.035
  26. Bavastrello, V., Erokhin, V., Carrara, S., Sbrana, F., Ricci, D. and Nicolini, C. (2004) Morphology and conductivity in poly(ortho-anisidine)/carbon nanotubes nanocomposite films. Thin Solid Films, 468, 17-22. https://doi.org/10.1016/j.tsf.2004.03.036
  27. Wang, J., Kirgoz, U.A., Mo, J.W., Lu, J., Kawde, A.N. and Muck, A. (2001) Glassy carbon paste electrodes. Electrochem. Commun., 3, 203-208. https://doi.org/10.1016/S1388-2481(01)00142-4
  28. Oni, J., Westbroek, P. and Nyokong, T. (2001) Construction and characterization of carbon paste ultra-microelectrodes. Electrochem. Commun., 3, 524-528. https://doi.org/10.1016/S1388-2481(01)00212-0
  29. Zhang, X., Ogorevc, B., Rupnik, M., Kreft, M. And Zorec, R. (1999) Cathophoresis paint insulated carbon fibre ultramicro disc electrode and its application to in vivo amperometric monitoring of quantalsecretion from signgle rat melanotrophs. Anal. Chim. Acta, 378, 135-143. https://doi.org/10.1016/S0003-2670(98)00570-4
  30. Gonzalez de la Huebra, M.A., Hernandez, P., Ballesteros, Y. and Hernandez, L. (2001) Determination of linuron in soil by stripping voltammetry with a carbon fiber microelectrode. Talanta, 54, 1077-1085. https://doi.org/10.1016/S0039-9140(01)00372-1
  31. Degefa, T.H., Chandravanshi, B.S. and Alemu, H. (1999) Differential pulse anodic stripping voltammetric determination of lead(II) with N-p-chlorophenylcinnamo-hydroxamic acid modified carbon paste electrode. Electroanalysis, 11, 1305-1311. https://doi.org/10.1002/(SICI)1521-4109(199911)11:17<1305::AID-ELAN1305>3.0.CO;2-2
  32. Arrigan, D.W.M. and Lowens, M.J. (1999) Polypyrrole films doped with an electroactive sulfonated chelating reagent: electrochemical characterization and the detection of metal ions. Electroanalysis, 11, 647-652. https://doi.org/10.1002/(SICI)1521-4109(199907)11:9<647::AID-ELAN647>3.0.CO;2-N

Cited by

  1. ) chemosensor vol.142, pp.18, 2017, https://doi.org/10.1039/C7AN01052D