• 제목/요약/키워드: sensing energy

검색결과 947건 처리시간 0.019초

An Approach to maximize throughput for Energy Efficient Cognitive Radio Networks

  • Ghosh, Jyotirmoy;Koo, Insoo
    • International Journal of Advanced Culture Technology
    • /
    • 제1권2호
    • /
    • pp.18-23
    • /
    • 2013
  • In this paper, we consider the problem of designing optimal sensing time and the minimization of energy consumption in the Cognitive radio Network. Trade-off between throughput and the sensing time are observed, and the equations are derived for the optimal choice of design variables. In this paper, we also look at the optimization problem involving all the design parameters together. The advantages of the proposed scheme for the spectrum sensing and access process are shown through simulation.

  • PDF

Two-Stage Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Networks

  • Satrio, Cahyo Tri;Jaeshin, Jang
    • Journal of information and communication convergence engineering
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Spectrum sensing in cognitive radio networks allows secondary users to sense the unused spectrum without causing interference to primary users. Cognitive radio requires more accurate sensing results from unused portions of the spectrum. Accurate spectrum sensing techniques can reduce the probability of false alarms and misdetection. In this paper, a two-stage spectrum sensing scheme is proposed for cooperative spectrum sensing in cognitive radio networks. In the first stage, spectrum sensing is executed for each secondary user using energy detection based on double adaptive thresholds to determine the spectrum condition. If the energy value lies between two thresholds, a fuzzy logic scheme is applied to determine the channel conditions more accurately. In the second stage, a fusion center combines the results of each secondary user and uses a fuzzy logic scheme for combining all decisions. The simulation results show that the proposed scheme provides increased sensing accuracy by about 20% in some cases.

Complexity based Sensing Strategy for Spectrum Sensing in Cognitive Radio Networks

  • Huang, Kewen;Liu, Yimin;Hong, Yuanquan;Mu, Junsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4372-4389
    • /
    • 2019
  • Spectrum sensing has attracted much attention due to its significant contribution to idle spectrum detection in Cognitive Radio Networks. However, specialized discussion is on complexity-based sensing strategy for spectrum sensing seldom considered. Motivated by this, this paper is devoted to complexity-based sensing strategy for spectrum sensing. Firstly, three efficiency functions are defined to estimate sensing efficiency of a spectrum scheme. Then a novel sensing strategy is proposed given sensing performance and computational complexity. After that, the proposed sensing strategy is extended to energy detector, Cyclostationary feature detector, covariance matrix detector and cooperative spectrum detector. The proposed sensing strategy provides a novel insight into sensing performance estimation for its consideration of both sensing capacity and sensing complexity. Simulations analyze three efficiency functions and optimal sensing strategy of energy detector, Cyclostationary feature detector and covariance matrix detector.

A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor

  • Cui, Yong;Gao, Robert X.;Yang, Dengfeng;Kazmer, David O.
    • Smart Structures and Systems
    • /
    • 제3권1호
    • /
    • pp.1-22
    • /
    • 2007
  • The energy efficiency of a self-powered wireless sensing system for pressure monitoring in injection molding is analyzed using Bond graph models. The sensing system, located within the mold cavity, consists of an energy converter, an energy modulator, and a ultrasonic signal transmitter. Pressure variation in the mold cavity is extracted by the energy converter and transmitted through the mold steel to a signal receiver located outside of the mold, in the form of ultrasound pulse trains. Through Bond graph models, the energy efficiency of the sensing system is characterized as a function of the configuration of a piezoceramic stack within the energy converter, the pulsing cycle of the energy modulator, and the thicknesses of the various layers that make up the ultrasonic signal transmitter. The obtained energy models are subsequently utilized to identify the minimum level of signal intensity required to ensure successful detection of the ultrasound pulse trains by the signal receiver. The Bond graph models established have shown to be useful in optimizing the design of the various constituent components within the sensing system to achieve high energy conversion efficiency under a compact size, which are critical to successful embedment within the mold structure.

Unlimited Cooperative Sensing with Energy Detection for Cognitive Radio

  • Bae, Sunghwan;Kim, Hongseok
    • Journal of Communications and Networks
    • /
    • 제16권2호
    • /
    • pp.172-182
    • /
    • 2014
  • In this paper, we investigate the fundamental performance limits of the cooperative sensing using energy detection by considering the unlimited number of sensing nodes. Although a lot of cognitive radio research so far proposed various uses of energy detection because of its simplicity, the performance limits of energy detection have not been studied when a large number of sensing nodes exist. First, we show that when the sensing nodes see the independent and identically distributed channel conditions, then as the number of sensing nodes N goes to infinity, the OR rule of hard decision achieves zero of false alarm Pf for any given target probability of detection $\bar{P_d}$ irrespective of the non-zero received primary user signal to noise ratio ${\gamma}$. Second, we show that under the same condition, when the AND rule of hard decision is used, there exists a lower bound of $P_f$. Interestingly, however, for given $\bar{P_d}$, $P_f$ goes to 1 as N goes to infinity. Third, we show that when the soft decision is used, there exists a way of achieving 100% utilization of secondary user, i.e., the sensing time overhead ratio goes to zero so does $P_f$.We verify our analyses by performing extensive simulations of the proposed unlimited cooperative sensing. Finally, we suggest a way of incorporating the unlimited cooperative sensing into a practical cellular system such as long term evolutionadvanced by exploiting the existing frame structure of absolute blank subframe to implement the in-band sensing.

Energy Use Coordinator for Multiple Personal Sensor Devices

  • Rhee, Yunseok
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권2호
    • /
    • pp.9-19
    • /
    • 2017
  • Useful continuous sensing applications are increasingly emerging as a new class of mobile applications. Meanwhile, open, multi-use sensor devices are newly adopted beyond smartphones, and provide huge opportunities to expand potential application categories. In this upcoming environment, uncoordinated use of sensor devices would cause severe imbalance in power consumption of devices, and thus result in early shutdown of some sensing applications depending on power-hungry devices. In this paper, we propose EnergyCordy, a novel inter-device energy use coordination system; with a system-wide holistic view, it coordinates the energy use of concurrent sensing applications over multiple sensor devices. As its key approach, we propose a relaxed sensor association; it decouples the energy use of an application from specific sensor devices leveraging multiple context inference alternatives, allowing flexible energy coordination at runtime. We demonstrated the effectiveness of EnergyCordy by developing multiple example applications over custom-designed wearable senor devices. We show that EnergyCordy effectively coordinates the power usage of concurrent sensing applications over multiple devices and prevent undesired early shutdown of applications.

인지 무선 시스템에서 확인 과정을 가지는 에너지 검출기의 스펙트럼 센싱 성능에 센싱 시간이 미치는 영향 (Effect of Sensing Time on the Spectrum Sensing Performance of Energy Detector with Verification in Cognitive Radio System)

  • 백준호;황승훈
    • 대한전자공학회논문지TC
    • /
    • 제46권1호
    • /
    • pp.89-93
    • /
    • 2009
  • 본 논문은 에너지 검출기에 시간 지연 장치를 채택하여 복수번의 확인 과정을 갖는 향상된 스펙트럼 검출기에서 센싱 시간에 따른 성능의 영향을 알아본다. SNR은 1dB, 그리고 오보 확률은 0.1로 고정하고 3, 60, 100km/h의 다양한 이동 속도를 고려한 스즈키 채널 하에서 시뮬레이션을 통해 센싱 성능을 고찰하고 이를 기존의 에너지 검출기의 경우와 비교한다.

Energy Efficiency Resource Allocation for MIMO Cognitive Radio with Multiple Antenna Spectrum Sensing

  • Ning, Bing;Yang, Shouyi;Mu, Xiaomin;Lu, Yanhui;Hao, Wanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4387-4404
    • /
    • 2015
  • The energy-efficient design of sensing-based spectrum sharing of a multi-input and multi-output (MIMO) cognitive radio (CR) system with imperfect multiple antenna spectrum sensing is investigated in this study. Optimal resource allocation strategies, including sensing time and power allocation schemes, are studied to maximize the energy efficiency (EE) of the secondary base station under the transmit power and interference power constraints. EE problem is formulated as a nonlinear stochastic fractional programming of a nonconvex optimal problem. The EE problem is transformed into its equivalent nonlinear parametric programming and solved by one-dimension search algorithm. To reduce searching complexity, the search range was founded by demonstration. Furthermore, simulation results confirms that an optimal sensing time exists to maximize EE, and shows that EE is affected by the spectrum detection factors and corresponding constraints.

에너지 수집형 무선 센서 네트워크에서 선택적 데이터 압축을 통한 동적 센싱 주기 제어 기법 (Dynamic Sensing-Rate Control Scheme Using a Selective Data-Compression for Energy-Harvesting Wireless Sensor Networks)

  • 윤익준;이준민;정세미;전준민;노동건
    • 대한임베디드공학회논문지
    • /
    • 제11권2호
    • /
    • pp.79-86
    • /
    • 2016
  • In wireless sensor networks, increasing the sensing rate of each node to improve the data accuracy usually incurs a decrease of network lifetime. In this study, an energy-adaptive data compression scheme is proposed to efficiently control the sensing rate in an energy-harvesting wireless sensor network (WSN). In the proposed scheme, by utilizing the surplus energy effectively for the data compression, each node can increase the sensing rate without any rise of blackout time. Simulation result verifies that the proposed scheme gathers more amount of sensory data per unit time with lower number of blackout nodes than the other compression schemes for WSN.

압축감지 기술을 채용한 에너지 검출 스펙트럼 센싱 (Energy Detector-Aided Spectrum Sensing Using Compressive Sensing)

  • 이재혁;전차을;황승훈
    • 대한전자공학회논문지TC
    • /
    • 제48권11호
    • /
    • pp.67-72
    • /
    • 2011
  • 본 논문은 에너지 검출기를 사용하여 1차 사용자를 감지하는 경우, 압축 감지 기술을 채용하여 나이퀴스트율 보다 낮은 표본화율을 사용하여 기존의 에너지 검출기만으로 기존보다 넓은 주파수 대역을 감지하는 경우를 가정한다. 스즈키 채널 하에서 시뮬레이션을 통해 넓은 주파수 대역을 센싱하는 과정에서 나이퀴스트 표본화율보다 낮은 표본화률에 따른 오보확률과 감지확률을 통해 센싱 성능을 고찰한다.