• 제목/요약/키워드: sense classification

검색결과 156건 처리시간 0.031초

지지벡터기계를 이용한 단어 의미 분류 (Word Sense Classification Using Support Vector Machines)

  • 박준혁;이성욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.563-568
    • /
    • 2016
  • 단어 의미 분별 문제는 문장에서 어떤 단어가 사전에 가지고 있는 여러 가지 의미 중 정확한 의미를 파악하는 문제이다. 우리는 이 문제를 다중 클래스 분류 문제로 간주하고 지지벡터기계를 이용하여 분류한다. 세종 의미 부착 말뭉치에서 추출한 의미 중의성 단어의 문맥 단어를 두 가지 벡터 공간에 표현한다. 첫 번째는 문맥 단어들로 이뤄진 벡터 공간이고 이진 가중치를 사용한다. 두 번째는 문맥 단어의 윈도우 크기에 따라 문맥 단어를 단어 임베딩 모델로 사상한 벡터 공간이다. 실험결과, 문맥 단어 벡터를 사용하였을 때 약 87.0%, 단어 임베딩을 사용하였을 때 약 86.0%의 정확도를 얻었다.

사전 정보를 이용한 단어 중의성 해소 모형에 관한 실험적 연구 (An Experimental Study on an Effective Word Sense Disambiguation Model Based on Automatic Sense Tagging Using Dictionary Information)

  • 이용구;정영미
    • 정보관리학회지
    • /
    • 제24권1호
    • /
    • pp.321-342
    • /
    • 2007
  • 이 연구에서는 수작업 태깅없이 기계가독형 사전을 이용하여 자동으로 의미를 태깅한 후 학습데이터로 구축한 분류기에 대해 의미를 분류하는 단어 중의성 해소 모형을 제시하였다. 자동 태깅을 위해 사전 추출 정보 기반방법과 연어 공기 기반 방법을 적용하였다. 실험 결과, 자동 태깅에서는 복수 자질 축소를 적용한 사전 추출 정보 기반 방법이 70.06%의 태깅 정확도를 보여 연어 공기 기반 방법의 56.33% 보다 24.37% 향상된 성능을 가져왔다. 사전 추출 정보 기반 방법을 이용한 분류기의 분류 정학도는 68.11%로서 연어 공기 기반 방법의 62.09% 보다 9.7% 향상된 성능을 보였다. 또한 두 자동 태깅 방법을 결합한 결과 태깅 정확도는 76.09%, 분류 정확도는 76.16%로 나타났다.

Sense-Making in Identity Construction Revisited: Super Tuscan Wines and Invalidated Institutional Constraints

  • Yoo, Taeyoung;Bachmann, Reinhard
    • 한국조리학회지
    • /
    • 제23권6호
    • /
    • pp.143-152
    • /
    • 2017
  • This paper examined seemingly well-working compromises in identity construction, questioning whether the compromises could function only nominally in practice. The literature has paid attention to the conflicts which end up functionally sense-making, through either unilaterally enforced or mutually assimilated compromises. In contrast, this paper's analysis of Super Tuscan wines under the Italian government's quality regulation illustrated that the compromises between wineries and classification systems do not work well and make the classification systems meaningless in the end. This study thus argued that compromises in identity construction do not always result in functionally sense-making outcomes: they could be only nominal. This study suggested that idiosyncratic institutional contexts, such as weak organizational legacy, affect the results of identity construction in functional terms. At last, the theoretical and practical implications both in organization and management of this study were well discussed.

한국어 동사의 어휘의미망 구축을 위한 중립동사의 의미분할 (Word Sense Distinction of Middle Verbs for Korean Verb Wordnet)

  • 이은령;윤애선
    • 한국언어정보학회지:언어와정보
    • /
    • 제9권2호
    • /
    • pp.23-48
    • /
    • 2005
  • This study aims to discuss the word sense distinction of Korean middle verbs for restructuring KorLexVerb 1.0. Despite the duality of its meaning and syntactic structure, the word senses of middle verb are not clearly distinguished in current dictionaries. The underspecification causes very often mismatches that a same Korean word sense is used for two different English verb senses. A close examination on the syntactic and semantic properties of middle verb shows us that the word sense distinction and the reconstruction of hierarchical structure are indispensable. Finally, by doing this fine grained word sense distinction, we propose an alternative way of classification and description of the verb polysemy for KorLexVerb 1.0 as well as for dictionary-like language resources.

  • PDF

Word-Sense Classification by Hierarchical Clustering

  • Lau, KenY.K.;Luk RobertW.P.
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 1998년도 Language, Information and Computation = Selected Papers from the 12th Pacific Asia Conference on Language, Information and Computation, Singapore
    • /
    • pp.236-247
    • /
    • 1998
  • PDF

이치화 영상에 대한 계조치 동시발생행렬을 이용한 타이어 접지 패턴의 분류 (Tire tread pattern classification using gray level cooccurrence matrix for the binary image)

  • 박귀태;김민기;김진헌;정순원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.100-105
    • /
    • 1992
  • Texture is one of the important characteristics that has been used to identify objects or regions of interest in an image. Tire tread patterns can be considered as a kind of texture, and these are classified with a texture analysis method. In this sense, this paper proposes a new algorithm for the classification of tire tread pattern. For the classification, cooccurrence matrix for the binary image is used. The performances are tested by experimentally 8 different tire tread pattern and the robustness is examined by including some kinds on noise.

  • PDF

A STUDY OF SOME TESTS OF TREND IN CONTINGENCY TABLES

  • Jee, Eun-Sook
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제4권1호
    • /
    • pp.7-18
    • /
    • 1997
  • Consider an $r\;\times\;c$ contingency table under the full multinomial model in which each classification is ordered. The problem is to test the null hypothesis of independence. A number of tests have been proposed for this problem. In this article we show that all of these tests can be improved on in some sense for most cases. In fact the preceding tests sometimes are inadmissible in a strict sense. Furthermore, we show by example that in some cases improved tests can yield substantially improved power functions.

  • PDF

분류의 관점에서 초등수학 평면도형 고찰 (A Study on the Plane Figure of Elementary School Mathematics in the View of Classification)

  • 김해규;이호수;최근배
    • East Asian mathematical journal
    • /
    • 제37권4호
    • /
    • pp.355-379
    • /
    • 2021
  • In this article, we investigated plane figures introduced in elementary school mathematics in the perspective of traditional classification, and also analyzed plane figures focused on the invariance of plane figures out of traditional classification. In the view of traditional classification, how to treat trapezoids was a key argument. In the current mathematics curriculum of the elementary school mathematics, the concept of sliding, flipping, and turning are introduced as part of development activities of spatial sense, but it is rare to apply them directly to figures. For example, how are squares and rectangles different in terms of symmetry? One of the main purposes of geometry learning is the classification of figures. Thus, the activity of classifying plane figures from a symmetrical point of view has sufficiently educational significance from Klein's point of view.

Transfer Learning Using Convolutional Neural Network Architectures for Glioma Classification from MRI Images

  • Kulkarni, Sunita M.;Sundari, G.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.198-204
    • /
    • 2021
  • Glioma is one of the common types of brain tumors starting in the brain's glial cell. These tumors are classified into low-grade or high-grade tumors. Physicians analyze the stages of brain tumors and suggest treatment to the patient. The status of the tumor has an importance in the treatment. Nowadays, computerized systems are used to analyze and classify brain tumors. The accurate grading of the tumor makes sense in the treatment of brain tumors. This paper aims to develop a classification of low-grade glioma and high-grade glioma using a deep learning algorithm. This system utilizes four transfer learning algorithms, i.e., AlexNet, GoogLeNet, ResNet18, and ResNet50, for classification purposes. Among these algorithms, ResNet18 shows the highest classification accuracy of 97.19%.

단어의 의미와 문맥을 고려한 순환신경망 기반의 문서 분류 (Document Classification using Recurrent Neural Network with Word Sense and Contexts)

  • 주종민;김남훈;양형정;박혁로
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권7호
    • /
    • pp.259-266
    • /
    • 2018
  • 본 논문에서는 단어의 순서와 문맥을 고려하는 특징을 추출하여 순환신경망(Recurrent Neural Network)으로 문서를 분류하는 방법을 제안한다. 단어의 의미를 고려한 word2vec 방법으로 문서내의 단어를 벡터로 표현하고, 문맥을 고려하기 위해 doc2vec으로 입력하여 문서의 특징을 추출한다. 문서분류 방법으로 이전 노드의 출력을 다음 노드의 입력으로 포함하는 RNN 분류기를 사용한다. RNN 분류기는 신경망 분류기 중에서도 시퀀스 데이터에 적합하기 때문에 문서 분류에 좋은 성능을 보인다. RNN에서도 그라디언트가 소실되는 문제를 해결해주고 계산속도가 빠른 GRU(Gated Recurrent Unit) 모델을 사용한다. 실험 데이터로 한글 문서 집합 1개와 영어 문서 집합 2개를 사용하였고 실험 결과 GRU 기반 문서 분류기가 CNN 기반 문서 분류기 대비 약 3.5%의 성능 향상을 보였다.