• Title/Summary/Keyword: semiparametric model

Search Result 51, Processing Time 0.227 seconds

Performance Comparison of Cumulative Incidence Estimators in the Presence of Competing Risks (경쟁위험 하에서의 누적발생함수 추정량 성능 비교)

  • Kim, Dong-Uk;Ahn, Chi-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.357-371
    • /
    • 2007
  • For the time-to-failure data with competing risks, cumulative incidence functions (CIFs) are commonly estimated using nonparametric methods. If the cases of events due to the cause of primary interest are infrequent relative to other cause of failure, nonparametric methods may result in rather imprecise estimates for CIF. In such cases, Bryant et al. (2004) suggested to model the cause-specific hazard of primary interest parametrically, while accounting for the other modes of failure using nonparametric estimator. We represented the semiparametric cumulative incidence estimator and extended to the model of Weibull and log-normal distribution. We also conducted simulations to access the performance of the semiparametric cumulative incidence estimators and to investigate the impact of model misspecification in log-normal cause-specific hazard model.

Mean estimation of small areas using penalized spline mixed-model under informative sampling

  • Chytrasari, Angela N.R.;Kartiko, Sri Haryatmi;Danardono, Danardono
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.349-363
    • /
    • 2020
  • Penalized spline is a suitable nonparametric approach in estimating mean model in small area. However, application of the approach in informative sampling in a published article is uncommon. We propose a semiparametric mixed-model using penalized spline under informative sampling to estimate mean of small area. The response variable is explained in terms of mean model, informative sample effect, area random effect and unit error. We approach the mean model by penalized spline and utilize a penalized spline function of the inclusion probability to account for the informative sample effect. We determine the best and unbiased estimators for coefficient model and derive the restricted maximum likelihood estimators for the variance components. A simulation study shows a decrease in the average absolute bias produced by the proposed model. A decrease in the root mean square error also occurred except in some quadratic cases. The use of linear and quadratic penalized spline to approach the function of the inclusion probability provides no significant difference distribution of root mean square error, except for few smaller samples.

Semiparametric Seasonal Cointegrating Rank Selection

  • Seong, Byeong-Chan;Ahn, Sung-K.;Ch, Sin-Sup
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.791-797
    • /
    • 2011
  • This paper considers the issue of seasonal cointegrating rank selection by information criteria as the extension of Cheng and Phillips (2009). The method does not require the specification of lag length in vector autoregression, is convenient in empirical work, and is in a semiparametric context because it allows for a general short memory error component in the model with only lags related to error correction terms. Some limit properties of usual information criteria are given for the rank selection and small Monte Carlo simulations are conducted to evaluate the performances of the criteria.

Semiparametric mixture of experts with unspecified gate network

  • Jung, Dahai;Seo, Byungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.685-695
    • /
    • 2017
  • The traditional mixture of experts (ME) modeled the gate network using a certain parametric function. However, if the assumed parametric function does not properly reflect the true nature, the prediction strength of ME would become weak. For example, the parametric ME often uses logistic or multinomial logistic models for the network model. However, this could be very misleading if the true nature of the data is quite different from those models. Although, in this case, we may develop more flexible parametric models by extending the model at hand, we will never be free from such misspecification problems. In order to alleviate such weakness of the parametric ME, we propose to use the semi-parametric mixture of experts (SME) in which the gate network is estimated in a non-parametrical way. Based on this, we compared the performance of the SME with those of ME and neural networks via several simulation experiments and real data examples.

Negative Binomial Varying Coefficient Partially Linear Models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.809-817
    • /
    • 2012
  • We propose a semiparametric inference for a generalized varying coefficient partially linear model(VCPLM) for negative binomial data. The VCPLM is useful to model real data in that varying coefficients are a special type of interaction between explanatory variables and partially linear models fit both parametric and nonparametric terms. The negative binomial distribution often arise in modelling count data which usually are overdispersed. The varying coefficient function estimators and regression parameters in generalized VCPLM are obtained by formulating a penalized likelihood through smoothing splines for negative binomial data when the shape parameter is known. The performance of the proposed method is then evaluated by simulations.

SOME PROPERTIES OF SIMEX ESTIMATOR IN PARTIALLY LINEAR MEASUREMENT ERROR MODEL

  • Meeseon Jeong;Kim, Choongrak
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.1
    • /
    • pp.85-92
    • /
    • 2003
  • We consider the partially linear model E(Y) : X$^{t}$ $\beta$+η(Z) when the X's are measured with additive error. The semiparametric likelihood estimation ignoring the measurement error gives inconsistent estimator for both $\beta$ and η(.). In this paper we suggest the SIMEX estimator for f to correct the bias induced by measurement error, and explore its properties. We show that the rational linear extrapolant is proper in extrapolation step in the sense that the SIMEX method under this extrapolant gives consistent estimator It is also shown that the SIMEX estimator is asymptotically equivalent to the semiparametric version of the usual parametric correction for attenuation suggested by Liang et al. (1999) A simulation study is given to compare two variance estimating methods for SIMEX estimator.

Shrinkage Small Area Estimation Using a Semiparametric Mixed Model (준모수혼합모형을 이용한 축소소지역추정)

  • Jeong, Seok-Oh;Choo, Manho;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.605-617
    • /
    • 2014
  • Small area estimation is a statistical inference method to overcome large variance due to a small sample size allocated in a small area. A shrinkage estimator obtained by minimizing relative error(RE) instead of MSE has been suggested. The estimator takes advantage of good interpretation when the data range is large. A semiparametric estimator is also studied for small area estimation. In this study, we suggest a semiparametric shrinkage small area estimator and compare small area estimators using labor statistics.

A Generalized Partly-Parametric Additive Risk Model

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.401-409
    • /
    • 2006
  • We consider a generalized partly-parametric additive risk model which generalizes the partly parametric additive risk model suggested by McKeague and Sasieni (1994). As an estimation method of this model, we propose to use the weighted least square estimation, suggested by Huffer and McKeague (1991), for Aalen's additive risk model by a piecewise constant risk. We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least squares method.

  • PDF

Estimating dose-response curves using splines: a nonparametric Bayesian knot selection method

  • Lee, Jiwon;Kim, Yongku;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.287-299
    • /
    • 2022
  • In radiation epidemiology, the excess relative risk (ERR) model is used to determine the dose-response relationship. In general, the dose-response relationship for the ERR model is assumed to be linear, linear-quadratic, linear-threshold, quadratic, and so on. However, since none of these functions dominate other functions for expressing the dose-response relationship, a Bayesian semiparametric method using splines has recently been proposed. Thus, we improve the Bayesian semiparametric method for the selection of the tuning parameters for splines as the number and location of knots using a Bayesian knot selection method. Equally spaced knots cannot capture the characteristic of radiation exposed dose distribution which is highly skewed in general. Therefore, we propose a nonparametric Bayesian knot selection method based on a Dirichlet process mixture model. Inference of the spline coefficients after obtaining the number and location of knots is performed in the Bayesian framework. We apply this approach to the life span study cohort data from the radiation effects research foundation in Japan, and the results illustrate that the proposed method provides competitive curve estimates for the dose-response curve and relatively stable credible intervals for the curve.

A GEE approach for the semiparametric accelerated lifetime model with multivariate interval-censored data

  • Maru Kim;Sangbum Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.389-402
    • /
    • 2023
  • Multivariate or clustered failure time data often occur in many medical, epidemiological, and socio-economic studies when survival data are collected from several research centers. If the data are periodically observed as in a longitudinal study, survival times are often subject to various types of interval-censoring, creating multivariate interval-censored data. Then, the event times of interest may be correlated among individuals who come from the same cluster. In this article, we propose a unified linear regression method for analyzing multivariate interval-censored data. We consider a semiparametric multivariate accelerated failure time model as a statistical analysis tool and develop a generalized Buckley-James method to make inferences by imputing interval-censored observations with their conditional mean values. Since the study population consists of several heterogeneous clusters, where the subjects in the same cluster may be related, we propose a generalized estimating equations approach to accommodate potential dependence in clusters. Our simulation results confirm that the proposed estimator is robust to misspecification of working covariance matrix and statistical efficiency can increase when the working covariance structure is close to the truth. The proposed method is applied to the dataset from a diabetic retinopathy study.