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SOME PROPERTIES OF SIMEX ESTIMATOR IN
PARTIALLY LINEAR MEASUREMENT ERROR MODEL!

MEESEON JEONG! AND CHOONGRAK Kim?

ABSTRACT

We consider the partially linear model E(Y) = X‘8+7(Z) when the X’s
are measured with additive error. The semiparametric likelihood estimation
ignoring the measurement error gives inconsistent estimator for both 8 and
n(-). In this paper we suggest the SIMEX estimator for 8 to correct the bias
induced by measurement error, and explore its properties. We show that the
rational linear extrapolant is proper in extrapolation step in the sense that
the SIMEX method under this extrapolant gives consistent estimator. It is
also shown that the SIMEX estimator is asymptotically equivalent to the
semiparametric version of the usual parametric correction for attenuation
suggested by Liang et al. (1999). A simulation study is given to compare
two variance estimating methods for SIMEX estimator.

AMS 2000 subject classifications. Primary 62G08; Secondary 62G20.
Keywords. Extrapolant, nonparametric regression, simulation-extrapolation.

1. INTRODUCTION

If predictors in a regression model are subject to measurement error and
we use their surrogates to estimate parameters of interest, then the resulting
estimates are usually inconsistent. For consistent estimation in measurement er-
ror model, several methods have been suggested such as regression calibration
(Carroll and Stefanski, 1990) and simulation-extrapolation (SIMEX) (Cook and
Stefanski, 1995). Roughly speaking, SIMEX is more robust to the distributional
assumptions than the regression calibration, but SIMEX requires more compu-
tational amounts. Fuller (1987) and Carroll et al. (1995) give good reviews for
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these measurement error analysis. In this paper, we consider the measurement

error in a partially linear model,

K':X%,B—%—T](Zi)%—si, 1=1,...,n (1.1)
where X = (X1,..., X})! are covariates related linearly to response Y with para-
metric coefficients 8 = (B1,...,8k)t, Z is a scalar covariate, and 7(-) is unknown

smooth function. Assume the errors (g;) are 74d with mean zero and variance o2

and independent of covariates. The partially linear model was studied by Heck-
man (1986), Chen (1988), Speckman (1988), and Severini and Staniswalis (1994).
We are interested in the estimation of parametric coefficients 3, when the covari-
ates X are measured with error and we observe the surrogates W = (W1, ..., W;)!
instead of X, assuming

W, =X;+U;, i1=1,...,n (1.2)

where (U;) are iid measurement errors from N (0, £,,) and independent of (Y, X,
Z). Here L, is usually assumed to be known or to be easily estimated. The
assumption of normality and additivity of measurement errors are not crucial,
see Chapter 4 of Carroll et al. (1995).

In this paper, we consider the SIMEX estimator for # under the so-called par-
tially linear measurement error model (PLMEM), defined by (1.1) and (1.2), and
study its asymptotic properties. In Section 2, we introduce the SIMEX method
in PLMEM. In Section 3, we show that the SIMEX estimator with the rational
linear extrapolant is consistent for 8 and that it is asymptotically equivalent to
the estimator of Liang et al. (1999). Section 4 gives the comparison between two
methods of variance estimation for SIMEX estimator via a Monte Carlo study.

2. SIMEX EsTiMATOR IN PLMEM

If the covariates X are not related to the measurement error, one method to
estimate the parametric coefficients 8 in model (1.1) is to minimize

> {Y; - X!B)? 2.1)
i=1

where Y and X are the residuals after regressing nonparametrically Y and X on
Z, respectively. The resulting least squares estimator of 3 is the same as that of
Severini and Staniswalis (1994) if kernel regression is used for nonparametric fit.
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When there exists the measurement error in covariates X, the naive estimator
for B in PLMEM is obtained by ignoring measurement error and by minimizing
(2.1) with X replaced by W. Then we have

n

-1
Bnaive = {ZVV%W:} W,f}l (2'2)

where W are similarly defined to X. However, we can easily show that Bnaive
is inconsistent for 8 under some distributional assumption. See Section 3.1 for
the proof. Therefore, we consider the SIMEX method to reduce the bias by
measurement error in PLMEM.

The first part of the SIMEX method is the simulation step. Let A be a fixed
positive constant. For b=1,..., B, we obtain new predictors {Wp ;(A)}"_; where
Wii(A) = W, + \/XUb,i, i =1,...,n. Here {Uy;}?, are iid additional errors
generated from N(0,%,,). By nonparametric fit such as smoothing spline or
kernel regression, we get the residuals ¥; and VT’b,i()\), and by (2.2) we obtain
the resulting naive estimator, Eb(/\), b =1,...,B. Then we have the average
B (A = Zle Eb()\) /B as the estimator when there exist the measurement errors
with variance (1 + A\)X,,. Repeat this process to get E()\m) for0=X < A <
< A

For the extrapolation step, let g(A, ') be a regression function with unknown
coeflicients I" for response B(/\) and covariate A, called an extrapolant in the
SIMEX method. We will discuss about the proper extrapolant in PLMEM later.
The data {Am, B(A,,J}%Zl obtained in the simulation step are fitted to get g(A, f)
where T is the estimate of . Then we extrapolate the fitted model back to A = —1
to obtain the SIMEX estimate of 8 in PLMEM, denoted by Bs;yex = 9(—1,T).

3. SoME PROPERTIES OF SIMEX EstiMaATOR IN PLMEM

3.1. Proper extrapolating function

In SIMEX estimation, the following types of extrapolating function are often
used:

(1) g M\ T) =y +71A, T = (v,m): linear;
(i) go(M\T) =0 +7mA+ 7222, T = (y0,71,72): quadratic;

(iti) grr (A T) =y +71/(v2 + A), I' = (70, 11,72): rational linear.
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However, the choice of proper extrapolant is important to get consistent estima-
tor. Carroll et al. (1995) gives the summary of proper extrapolants for some
measurement error models. And Kim et al. (2000) considered a nonparametric
method via the Bezier curve to extrapolate the simulated data. In this section,
we obtain the proper extrapolant in PLMEM which gives consistent estimator
for B8 under some distributional assumptions.

Assume that (X, Z) are jointly normally distributed with mean (g, p.),
Var(X) = Zg, Var(Z) = o? and Cov(X,Z) = X;,. Let ¥, be the condi-
tional variance of X given Z. Then, under the model (1.1) and (1.2), we can
easily show that

E(Y|W,Z) = E(X|W, 2)!8+n(Z) = W'B* + n*(2) (3.1)
where

ﬁ* = (Ez|z + Euu)_lztgjlzﬂ7
N*(2) = 1(2) + (g + S2z(Z — 1) [02) (T = (Zgje + Zua) T Z,)B-

Since E(Y|Z) = E(W|2Z)!8* +n*(Z), we have E[Y — E(Y|W, Z)}? = E[(Y —
E(Y|Z)) — (W — E(W|Z))!8*]2. This implies that /3, ,,,, the minimizer of (2.1)
using W instead of X is not consistent for 8 but for 8*. By using this fact, we
can also see that B()) for a fixed constant A consistently estimates {Zg, + (1 +

)\)Zuu}‘lﬁilz,@. Therefore, /3 simex in PLMEM becomes consistent for 8 when

we use the rational linear extrapolant ggr (A, T') to fit the data {A\n, ﬁ (M) HM_,.

8.2. Asymptotic equivalence to Liang’s estimator

Under the model (1.1) and (1.2), Liang et al. (1999) suggested a method
to estimate B consistently. They noticed that E{Y; — W!8 — n(Z,)}? = E{Y; —
X!B—n(Zi)}*+B'TyuB and by minimizing 37, {Y; = WiB —n(Z;)}* —nB'TwuB,
they obtained an estimator of 8 given by

n -1 n
BL = {Z W, W; - nzuu} > WYL (3.2)
=1 =1

They also showed that B ; 1s consistent for B and that it is asymptotically nor-
mally distributed with covariance n"'D~'GD™!, which is estimated by replacing

Dand Gby D = (n— k)" 1%, WiW! — 5, and G = n~L 0 (W,(V; —
WEBL) + ZuuBL HWi(Yi — WIBL) + B}, respectively. For the definition of
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D and G, see Liang et al. (1999). Then, it can be shown that the SIMEX esti-
mator with the extrapolant ggry (A, I') is asymptotically equal to 8. The proof
is given in Appendix.

4. SIMULATION STUDY

To see the numerical behavior of the SIMEX estimator discussed in Section
2, and compare it with E 1, in (3.2), we perform a small sample simulation study
focused on the coverage probability of each estimator. To do this we need to
estimate the variance of ﬁ simMEx, and two methods are currently available. One
is the simulation-extrapolation method suggested by Stefanski and Cook (1995).
The conditions are easily checked to apply their method to the SIMEX estimator
in PLMEM. The other is so-called the estimating equation method discussed by
Carroll et al. (1996). In this section, B siMEx With these variance estimates is
compared to B 1, In terms of asymptotic coverage probability.

Under the model (1.1) and (1.2), it is assumed that k& = 1, i.e., X; is scalar
covariate and therefore all matrix notations in Section 2 are now changed into
scalars, for example, ¥, by o2. We generate (Xz, Z;) from the bivariate normal
distribution with mean (0,0) and 02 = 0.2, ¢?> = 0.1 and 0., = 0.05. The
model error ¢; and the measurement error U; are generated from N(0,0.1) and
N(0,c2), respectively. Let n(Z) = exp(—Z?), 8 =1, 02 = 0.1 and n = 100. For
the nonparametric fit to get the residuals Y; and Wi, the function smooth.spline
of S-PLUS is used since it gives bandwidth automa.tlcally selected.

First, we calculate ,Bnawe and ﬂL To obtain 65 IMEX, we use B = 100, A\, =
(m—1)/2, m =1,...,5 and the rational linear extrapolant grz (A, I') given in
Section 3.1. For the variance estimation of Bg IMEX, two methods are considered.
First, we use the simulation-extrapolation method by Stefanski and Cook (1995).
To be more specific, let 'ﬁ,()\) be the estimated variance of By()\) by Severini
and Staniswalis (1994), Zb . T(A)/B, and sA(A) the sample variance
of Bb( A), b=1,...,B. Then Var(ﬁSIMEX) is estimated by the extrapolation
of the data {)\m,T()\ ) — sA(Am) Y M_. to A = —1 with quadratic exptrapolant
9o(\T'). Here quadratic extrapolant is used to guarantee the nonnegativity of
variance estimate. This estimate is denoted by ‘75 iMEx- The estimating equation
method of Carroll et al. (1996) is easily evaluated by simple calculation and we
denote VEE as the estimated variance of BS IMEX by this method.

Based on the asymptotic normality of ﬂmwe, ﬂL, and ﬂgIMEX, the asymptotic
95% coverage probabilities are calculated after 100 repeats. The results are given
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TABLE 1 The asymptotzc 95% coverage | probabilities for Bnawe, /31,, ﬁs1ME»c
with VSIMEX, and ﬂSIMEX with VEE

estimator coverage probability
Enaive 0.01
B 0.94
Bsimex with Vsimex 0.72
Bsimex with Veg 0.93

in Table 1. As we expected, the coverage probability of Bnaive is far below the
nominal level. Note that BL and ESIMEX with estimated variance I7EE have
almost nominal coverage probabilities. Even though BSIME x is aymptotically
equivalent to 6L, the coverage probability is smaller than that of ,BL when the
variance is estimated by the simulation-extrapolation method. This is not due to
the SIMEX estimation scheme of 3, but is instead an artifact of using the variance
estimation method of Stefanski and Cook (1995) on a quadratic extrapolant.

APPENDIX : PROOF FOR ASYMPTOTIC EQUIVALENCE
BETWEEN IBSIMEX AND B,

Let Y; = Y; — E(Y;|Z;)), W; = W; — E(W le), and Wy ;(A) = Wy;(A) —
E(Wyi()A)|Z;) as n — oo. Note that Wb,i()\) W, + VAUy;, and Uy, are iid
random variables from N(0,X,,) and independent of (Y;, W;, Z;).

For fixed A and b, we have

1~ A o
—Zsz W,”A)=7-?:.1 W, W+ ZWU +EZ;UMU}M~
1= 1=
1 n
= =D WiW! + 28y, + 0p(n1?) (A.1)
"i=1

by using A = E(A) + O,{Var(A4)"/?} for a random variable A. Similarly, we

obtain

I~ n Il VA ~
=D WoiWYi = -3 WY+ == U,
=1 =1 =1
1< ~
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By (A.1) and (A.2), it follows that

g

(
n N ~ -1 n ~
Br(A) = { Wb,i(/\)WZ,i(A)} Y Wi (VY
: =1

—1 n
W+ nAS,, + o,,(nl/2)} {Z\Tvi?i + op(n1/2)}
=1
_1 n

= { W, W+ nAZuu} Y WY+ Op(n7V?).

i i=1
Therefore, the average B (A = Zle Eb()\) /B obtained in the simulation step is
equal to

n -1 n
{Z W, W! + nAZuu} S Wi, (A.3)
1=1 i=1

at the rate Op(n~1/2). Note that (A.3) is also equivalent to ,/B\L when A = —1.
From this fact, it is proved that B simEex obtained with the rational linear ex-
trapolant grr (A, T') in the extrapolation step is asymptotically equivalent to E I
in a partially linear measurement error model.
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