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Abstract

This paper considers the issue of seasonal cointegrating rank selection by information criteria as the exten-

sion of Cheng and Phillips (2009). The method does not require the specification of lag length in vector

autoregression, is convenient in empirical work, and is in a semiparametric context because it allows for a

general short memory error component in the model with only lags related to error correction terms. Some

limit properties of usual information criteria are given for the rank selection and small Monte Carlo simula-

tions are conducted to evaluate the performances of the criteria.
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1. Introduction

Various procedures have been proposed to determine cointegrating(CI) ranks in nonseasonal and

seasonal models. They are mostly the likelihood ratio type of tests, considered by Johansen (1996)

for nonseasonal cointegration, Johansen and Schaumburg (1999), Cubadda (2001), and Seong et al.

(2006) for seasonal cointegration. However, these procedures are based on parametric models that

require the specification of a full model such as lag length in vector autoregression and can occur

the misspecification of CI rank possibly through an inappropriate specification of the lag length.

Recently, the works by Phillips (2008), and Cheng and Phillips (2008, 2009) consider semiparametric

models as alternatives to parametric ones in determining CI rank. They regard CI rank as an order

parameter for which information criteria are particularly well suited since there are only a finite

number of possible choices.

In this paper, we extend the issue of cointegrating rank selection by information criteria to seasonal

models, by using Gaussian Reduced Rank(GRR) procedure of Ahn and Reinsel (1994). The GRR

estimation has a special characteristic that simultaneously imposes rank conditions at all existing
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seasonal unit roots (Seong and Yi, 2008). If we use a partial regression procedure, often used by

previous literature such as Johansen and Schaumburg (1999), it is impossible to construct the simul-

taneous estimation because it ignores the constraints of reduced ranks (i.e., cointegrated structures)

of the other unit roots except one unit root focused by the partial regression. Note that seasonal CI

rank tests, performed independently by focusing on one unit root at a time, can result in a seriously

inflated Type I error in terms of multiple hypothesis testing (Seong, 2009). Therefore, this paper

combines three advantages: (i) simultaneous estimation from the GRR, (ii) semiparametric model

without the specification of complete form, and (iii) convenience for practical implementation.

The paper is organized as follows. In Section 2, the semiparametric error correction model(ECM)

is presented for seasonal cointegration. The asymptotic results are given in Section 3. In Section 4,

small Monte Carlo simulations are conducted to evaluate performances of the proposed methods.

Conclusions are drawn in Section 5.

2. The Semiparametric Seasonal ECM

We consider the following semiparametric seasonal ECM:

Zt = A1B1Ut−1 +A2B2Vt−1 + (A3B4 +A4B3)Wt−1 + (A4B4 −A3B3)Wt−2 + et, (2.1)

where Xt is an m-vector time series with Zt = (1− L4)Xt stationary,

Ut = (1 + L)(1 + L2)Xt, Vt = (1− L)(1 + L2)Xt, Wt = (1− L2)Xt,

and Aj and Bj arem×r0j and r0j×m matrices, respectively, with rank equal to r0j for j = 1, . . . , 4,

and r03 = r04. The error term et is weakly dependent stationary time series with zero mean and

continuous spectral density matrix fe(λ). We assume that the initial value X0 is fixed and, for

brevity, Xt is observed on a quarterly basis. Models with the other seasonal periods, e.g., monthly,

can be easily implemented as in Ahn et al. (2004). Note that r01, r02, and r03(r04) denote the CI

ranks at seasonal unit roots 1, −1, and i(−i), respectively, (i.e., frequencies 0, π, and π/2(3π/2),

respectively), and B1Ut, B2Vt, (B3 +B4L)Wt, and (B4 −B3L)Wt are stationary processes, i.e., CI

relationships.

As in Phillips (2008) and Cheng and Phillips (2009), we treat model (2.1) semiparametrically with

regard to et and identify the seasonal CI ranks r01, r02, and r03(r04) directly and simultaneously

in model (2.1) by information criteria and the GRR estimation. Specifically, we identify the ranks

as follows: model (2.1) is estimated by the GRR for all combinations of r = (r1, r2, r3) with

rj = 0, 1, . . . ,m (j = 1, 2, 3) just as if et were a martingale difference, and the combination of

r = (r1, r2, r3) is chosen to minimize the corresponding information criteria as if model (2.1) were a

correctly specified parametric framework up to the ranks parameter r. Thus, the selection method

is convenient for practical implementation in empirical work because no explicit account is taken of

the weak dependence structure of et in the process. The criterion used to evaluate the seasonal CI

ranks takes the following form:

IC(r) = log
∣∣Σ̂(r)∣∣+ Cnn

−1 {(2mr1 − r21
)
+
(
2mr2 − r22

)
+ 2

(
2mr3 − r23

)}
, (2.2)

where Σ̂(r) denotes the residual covariance matrix from the GRR and coefficient Cn = log n,

2 log log n, or 2 corresponds to the BIC (Schwarz, 1978), HQ (Hannan and Quinn, 1979), and AIC

(Akaike, 1973) penalties, respectively. Note that, in Equation (2.2), the degrees of freedom terms
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2mr1−r21, 2mr2−r22, and 2(2mr3−r23) account for the 2mrj (j = 1, 2, 3, 4) elements of the matrices

Aj and Bj that have to be estimated, adjusted for the r2j restrictions on Bj that ensure a unique

parameterization.

For each combination r = (r1, r2, r3) with rj = 0, 1, . . . ,m (j = 1, 2, 3), we estimate the m × rj
matrices Aj and Bj by the GRR estimation, denoted by Âj and B̂j , and, for use in Equation (2.2),

we form the corresponding residual covariance matrices

Σ̂(r) = n−1
n∑

t=4

êtê
′
t, for rj = 0, 1, . . . ,m (j = 1, 2, 3),

where

êt = Zt − Â1B̂1Ut−1 − Â2B̂2Vt−1 −
(
Â3B̂4 + Â4B̂3

)
Wt−1 −

(
Â4B̂4 − Â3B̂3

)
Wt−2

and rj = 0 and rj = m imply that AjB
′
j = Om and Bj = Im, respectively. Model evaluation based

on IC(r) then leads to the seasonal CI ranks selection criterion

r̂ = argmin
0≤r1,r2,r3≤m

IC(r). (2.3)

Similarly in the Cheng and Phillips (2009), the information criterion IC(r) is expected to be weakly

consistent for selecting the CI ranks r = (r1, r2, r3) provided that the penalty term in Equation (2.2)

satisfies the weak requirements that Cn → ∞ and Cn/n→ 0as n→ ∞. No minimum expansion rate

for Cn such as log log n is required and no more complex parametric model needs to be estimated.

The approach is therefore quite straightforward for practical implementation.

3. Asymptotic Results

We consider the weak consistency of the information criteria for selecting the true seasonal CI

ranks r0 = (r01, r02, r03) under suitable regular conditions which are standard in the study of linear

process condition of the innovations, and seasonal cointegration. The following theorem can be

conjectured from that of Cheng and Phillips (2009).

Theorem 3.1. Under suitable assumptions,

(a) the criterion IC(r) is weakly consistent for selecting the seasonal CI ranks provided Cn → ∞
and Cn/n→ 0 as n→ ∞;

(b) the asymptotic distribution of the AIC criterion is given by

lim
n→∞

P (r̂AIC = r0) = ξ1 > 0,

lim
n→∞

P (r̂AIC = r|r ≻ r0) = ξ2 > 0,

lim
n→∞

P (r̂AIC = r|r ≺ r0) = 0,

where r1 ≻ r2 and r1 ≺ r2 denote that all components of the vector r1 − r2 and r2 − r1,

respectively, are positive.

Part (a) of theorem implies that all information criteria with Cn → ∞ and Cn/n→ 0, such as

BIC and HQ, are consistent for the selection of seasonal CI rank with semiparametric estimation

approach, i.e., without the specification of a full model. Part (b) implies that AIC is inconsistent
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Table 4.1. Seasonal CI rank selection when DGP I with et ∼ AR(1)

(r1, r2, r3)
BIC HQ AIC

T = 100 T = 400 T = 100 T = 400 T = 100 T = 400

(0, 0, 0) 0 0 0 0 0 0

(0, 1, 0) 0 0 0 0 0 0

(0, 2, 0) 0 0 0 0 0 0

(0, 0, 1) 0 0 0 0 0 0

(0, 1, 1) 0 0 0 0 0 0

(0, 2, 1) 0 0 0 0 0 0

(0, 0, 2) 0 0 0 0 0 0

(0, 1, 2) 0 0 0 0 0 0

(0, 2, 2) 0 0 0 0 0 0

(1, 0, 0) 0 0 0 0 0 0

(1, 1, 0) 0 0 0 0 0 0

(1, 2, 0) 0 0 0 0 0 0

(1, 0, 1) 0 0 0 0 0 0

(1, 1, 1) 8688 9342 7228 7942 5194 5334

(1, 2, 1) 177 59 550 358 1050 1059

(1, 0, 2) 0 0 0 0 0 0

(1, 1, 2) 605 332 1154 979 1656 1692

(1, 2, 2) 12 2 83 37 336 319

(2, 0, 0) 0 0 0 0 0 0

(2, 1, 0) 0 0 0 0 0 0

(2, 2, 0) 0 0 0 0 0 0

(2, 0, 1) 0 0 0 0 0 0

(2, 1, 1) 474 253 801 589 1145 980

(2, 2, 1) 14 3 64 21 243 214

(2, 0, 2) 0 0 0 0 0 0

(2, 1, 2) 30 9 108 73 293 333

(2, 2, 2) 0 0 12 1 83 69

Total 10000 10000 10000 10000 10000 10000

in that it asymptotically never underestimates CI ranks and, instead, asymptotically overestimates

them. This outcome is analogous to the well-known overestimation tendency of AIC or the result

of Cheng and Phillips (2009).

4. Monte Carlo Simulations

Monte Carlo simulations are conducted to evaluate the performances of the information criteria in

identifying seasonal CI ranks.

The first data generating process(DGP I) considered is the bivariate quarterly process modified

from that of Ahn and Reinsel (1994):(
1− L4)Xt = A1B1Ut−1 +A2B2Vt−1 +A4B2Wt−1 −A3B2Wt−2 + et,

where

A1 = (0.6, 0.6)′, A2 = (−0.4, 0.6)′, A3 = (0.6, − 0.6)′, A4 = (0.4, − 0.8)′,

B1 = (1, − 0.7), B2 = (1, 0.4).

Note that the characteristic roots are ±1, ±i, 0.9715 ± 0.7328i, and −1.3508 ± 0.3406i when et is
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Table 4.2. Seasonal CI rank selection when DGP II with et ∼ AR(1)

(r1, r2, r3)
BIC HQ AIC

T = 100 T = 400 T = 100 T = 400 T = 100 T = 400

(0, 0, 0) 6568 8508 2736 4233 526 522

(0, 1, 0) 543 160 1423 1091 1035 1005

(0, 2, 0) 5 0 58 38 116 125

(0, 0, 1) 1540 798 2051 1984 1063 1070

(0, 1, 1) 64 9 718 464 1819 1865

(0, 2, 1) 0 0 29 16 197 217

(0, 0, 2) 127 42 274 217 209 239

(0, 1, 2) 4 0 76 45 357 406

(0, 2, 2) 0 0 2 1 30 44

(1, 0, 0) 824 380 935 878 378 318

(1, 1, 0) 36 9 425 200 770 660

(1, 2, 0) 1 0 13 5 92 80

(1, 0, 1) 133 42 592 352 754 632

(1, 1, 1) 1 0 152 80 1150 1096

(1, 2, 1) 0 0 10 0 122 109

(1, 0, 2) 8 1 71 46 142 129

(1, 1, 2) 0 0 18 7 230 240

(1, 2, 2) 0 0 0 0 22 24

(2, 0, 0) 120 48 191 188 122 131

(2, 1, 0) 6 2 82 46 213 257

(2, 2, 0) 0 0 4 1 22 36

(2, 0, 1) 19 1 90 81 204 225

(2, 1, 1) 0 0 27 16 278 391

(2, 2, 1) 0 0 1 0 42 32

(2, 0, 2) 1 0 16 8 40 47

(2, 1, 2) 0 0 6 3 62 94

(2, 2, 2) 0 0 0 0 5 6

Total 10000 10000 10000 10000 10000 10000

regarded as a martingale difference and, then, Xt is seasonally cointegrated with CI rank of one at

unit roots 1, −1, and i each.

In the second data generating process(DGP II), we consider the case without cointegration at any

seasonal unit root, (
1− L4)Xt = et.

In both DGPs, the error process et is assumed, as in Cheng and Phillips (2008), to be AR(1),

MA(1), and ARMA(1,1) errors, corresponding to the models

et = ψImet−1 + ηt, et = ηt + ϕImηt−1 and et = ψImet−1 + ηt + ϕImηt−1,

where |ψ| < 1, |ϕ| < 1, and ηt are i.i.d. N(0,Σ) with Σ = diag{1 + θ, 1 − θ}. The parameters are

set to ψ = ϕ = 0.4, and θ = 0.25.

We generate 10,000 replications of the sample sizes with T = 100 and 400. We use initial values

that are set to zero; however, discard the first 50 observations in order to eliminate dependence on

the starting conditions. The performances of the criteria BIC, HQ, and AIC are investigated for

the samples sizes and the results are summarized in Table 4.1 and Table 4.2 which show the results
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for DGP I and DGP II, respectively. The tables display the results for the model with AR(1) error.

We omit the tables for that with the other errors because similar results are observed.

From Table 4.1, as expected from Theorem 3.1, all the information criteria are generally minimized

when selected seasonal CI ranks coincide with true ranks, i.e., (r1, r2, r3) = (1, 1, 1). Of note is

that they never select the case that at least one rank among CI ranks is underestimated and the

criteria have a tendency to overestimate ranks. The tendency is strengthened when only one rank

is overestimated, such as (r1, r2, r3) = (1, 1, 2), (1, 2, 1), and (2, 1, 1). Nevertheless, BIC performs

better than HQ and AIC which show a strong tendency to overestimate CI ranks.

As underestimation of CI ranks cannot occur in DGP II, we can analysis overestimation better

than in DGP I. From Table 4.2, we observe similar results to Table 4.1 but the overestimation by

AIC is noticeably strong, especially, in that AIC selects (r1, r2, r3) = (0, 1, 0), (0, 0, 1), (0, 1, 1), and

(1, 1, 1) comparatively often, instead of true ranks (r1, r2, r3) = (0, 0, 0). This tendency is noticeably

attenuated when CI rank is overestimated at unit root 1.

Note that, from Table 4.1 and Table 4.2, we can conjecture the results that the information criteria

will give when we use the partial regression procedure by Johansen and Schaumburg (1999) instead

of the GRR. As the partial regression is performed by focusing on one unit root by regarding the

ranks of the other unit roots as full ranks, the selection frequencies at the cases (r1, r2, r3) = (0, 2, 2),

(1, 2, 2), and (2, 2, 2) can show the conjecture.

5. Conclusions

In this paper, we show that information criteria can consistently select seasonal CI ranks if they

satisfy weak conditions on the expansion rate of the penalty coefficient, as extension of the nonsea-

sonal model in Cheng and Phillips (2009) to seasonal. The method by the criteria offers substantial

convenience to the empirical researcher because it is robust to weak dependence of error term.
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