• Title/Summary/Keyword: semiconductor yield classification

Search Result 16, Processing Time 0.02 seconds

A Yields Prediction in the Semiconductor Manufacturing Process Using Stepwise Support Vector Machine (SSVM(Stepwise-Support Vector Machine)을 이용한 반도체 수율 예측)

  • An, Dae-Wong;Ko, Hyo-Heon;Kim, Ji-Hyun;Baek, Jun-Geol;Kim, Sung-Shick
    • IE interfaces
    • /
    • v.22 no.3
    • /
    • pp.252-262
    • /
    • 2009
  • It is crucial to prevent low yields in the semiconductor industry. Since many factors affect variation in yield and they are deeply related, preventing low yield is difficult. There have been substantial researches in the field of yield prediction. Many researchers had used the statistical methods. Many studies have shown that artificial neural network (ANN) achieved better performance than traditional statistical methods. However, despite ANN's superior performance some problems such as over-fitting and poor explanatory power arise. In order to overcome these limitations, a relatively new machine learning technique, support vector machine (SVM), is introduced to classify the yield. SVM is simple enough to be analyzed mathematically, and it leads to high performances in practical applications. This study presents a new efficient classification methodology, Stepwise-SVM (SSVM), for detecting high and low yields. SSVM is step-by-step adjustment of parameters to be precisely the classification for actual high and low yield lot. The objective of this paper is to examine the feasibility of SVM and SSVM in the yield classification. The experimental results show that SVM and SSVM provides a promising alternative to yield classification for the field data.

A New Abnormal Yields Detection Methodology in the Semiconductor Manufacturing Process (반도체 제조공정에서의 이상수율 검출 방법론)

  • Lee, Jang-Hee
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.1
    • /
    • pp.243-260
    • /
    • 2008
  • To prevent low yields in the semiconductor industry is crucial to the success of that industry. However, to prevent low yields is difficult because of too many factors to affect yield variation and their complex relation in the semiconductor manufacturing process. This study presents a new efficient detection methodology for detecting abnormal yields including high and low yields, which can forecast the yield level of a production unit (namely a lot) based on yield-related feature variables' behaviors. In the methodology, we use C5.0 to identify the yield-related feature variables that are the combination of correlated process variables associated with yield, use SOM (Self-Organizing Map) neural networks to extract and classify significant patterns of past abnormal yield lots and finally use C5.0 to generate classification rules for detecting abnormal yield lot. We illustrate the effectiveness of our methodology using a semiconductor manufacturing company's field data.

  • PDF

A Prediction of Wafer Yield Using Product Fabrication Virtual Metrology Process Parameters in Semiconductor Manufacturing (반도체 제조 가상계측 공정변수를 이용한 웨이퍼 수율 예측)

  • Nam, Wan Sik;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.6
    • /
    • pp.572-578
    • /
    • 2015
  • Yield prediction is one of the most important issues in semiconductor manufacturing. Especially, for a fast-changing environment of the semiconductor industry, accurate and reliable prediction techniques are required. In this study, we propose a prediction model to predict wafer yield based on virtual metrology process parameters in semiconductor manufacturing. The proposed prediction model addresses imbalance problems frequently encountered in semiconductor processes so as to construct reliable prediction model. The effectiveness and applicability of the proposed procedure was demonstrated through a real data from a leading semiconductor industry in South Korea.

Automatic classification of failure patterns in semiconductor EDS Test using pattern recognition (반도체 EDS공정에서의 패턴인식기법을 이용한 불량 유형 자동 분류 방법 연구)

  • 한영신;황미영;이칠기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.703-706
    • /
    • 2003
  • Yield enhancement in semiconductor fabrication is important. It is ideal to prevent all the failures. However, when a failure occurs, it is important to quickly specify the cause stage and take countermeasure. The automatic method of failure pattern extraction from fail bit map provides reduced time to analysis and facilitates yield enhancement. This paper describes the techniques to automatically classifies a failure pattern using a fail bit map, a new simple schema which facilitates the failure analysis.

  • PDF

Automatic Classification of Failure Patterns in Semiconductor EDS Test for Yield Improvement (수율향상을 위한 반도체 EDS공정에서의 불량유형 자동분류)

  • Han Young Shin;Lee Chil Gee
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • In the semiconductor manufacturing, yield enhancement is an urgent issue. It is ideal to prevent all the failures. However, when a failure occurs, it is important to quickly specify the cause stage and take countermeasure. Reviewing wafer level and composite lot level yield patterns has always been an effective way of identifying yield inhibitors and driving process improvement. This process is very time consuming and as such generally occurs only when the overall yield of a device has dropped significantly enough to warrant investigation. The automatic method of failure pattern extraction from fail bit map provides reduced time to analysis and facilitates yield enhancement. The automatic method of failure pattern extraction from fail bit map provides reduced time to analysis and facilitates yield enhancement. This paper describes the techniques to automatically classifies a failure pattern using a fail bit map.

  • PDF

Feature Based Decision Tree Model for Fault Detection and Classification of Semiconductor Process (반도체 공정의 이상 탐지와 분류를 위한 특징 기반 의사결정 트리)

  • Son, Ji-Hun;Ko, Jong-Myoung;Kim, Chang-Ouk
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.126-134
    • /
    • 2009
  • As product quality and yield are essential factors in semiconductor manufacturing, monitoring the main manufacturing steps is a critical task. For the purpose, FDC(Fault detection and classification) is used for diagnosing fault states in the processes by monitoring data stream collected by equipment sensors. This paper proposes an FDC model based on decision tree which provides if-then classification rules for causal analysis of the processing results. Unlike previous decision tree approaches, we reflect the structural aspect of the data stream to FDC. For this, we segment the data stream into multiple subregions, define structural features for each subregion, and select the features which have high relevance to results of the process and low redundancy to other features. As the result, we can construct simple, but highly accurate FDC model. Experiments using the data stream collected from etching process show that the proposed method is able to classify normal/abnormal states with high accuracy.

Application of Data mining for improving and predicting yield in wafer fabrication system (데이터마이닝을 이용한 반도체 FAB공정의 수율개선 및 예측)

  • 백동현;한창희
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.157-177
    • /
    • 2003
  • This paper presents a comprehensive and successful application of data mining methodologies to improve and predict wafer yield in a semiconductor wafer fabrication system. As the wafer fabrication process is getting more complex and the volume of technological data gathered continues to be vast, it is difficult to analyze the cause of yield deterioration effectively by means of statistical or heuristic approaches. To begin with this paper applies a clustering method to automatically identify AUF (Area Uniform Failure) phenomenon from data instead of naked eye that bad chips occurs in a specific area of wafer. Next, sequential pattern analysis and classification methods are applied to and out machines and parameters that are cause of low yield, respectively. Furthermore, radial bases function method is used to predict yield of wafers that are in process. Finally, this paper demonstrates an information system, Y2R-PLUS (Yield Rapid Ramp-up, Prediction, analysis & Up Support), that is developed in order to analyze and predict wafer yield in a korea semiconductor manufacturer.

  • PDF

APC Technique and Fault Detection and Classification System in Semiconductor Manufacturing Process (반도체 공정에서의 APC 기법 및 이상감지 및 분류 시스템)

  • Ha, Dae-Geun;Koo, Jun-Mo;Park, Dam-Dae;Han, Chong-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.875-880
    • /
    • 2015
  • Traditional semiconductor process control has been performed through statistical process control techniques in a constant process-recipe conditions. However, the complexity of the interior of the etching apparatus plasma physics, quantitative modeling of process conditions due to the many difficult features constraints apply simple SISO control scheme. The introduction of the Advanced Process Control (APC) as a way to overcome the limits has been using the APC process control methodology run-to-run, wafer-to-wafer, or the yield of the semiconductor manufacturing process to the real-time process control, performance, it is possible to improve production. In addition, it is possible to establish a hierarchical structure of the process control made by the process control unit and associated algorithms and etching apparatus, the process unit, the overall process. In this study, the research focused on the methodology and monitoring improvements in performance needed to consider the process management of future developments in the semiconductor manufacturing process in accordance with the age of the APC analysis in real applications of the semiconductor manufacturing process and process fault diagnosis and control techniques in progress.

Fault Detection in Semiconductor Manufacturing Using Statistical Method

  • Lim, Woo-Yup;Jeon, Sung-Ik;Han, Seung-Soo;Soh, Dae-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.44-44
    • /
    • 2009
  • Fault detection is necessary for yield enhancement and cost reduction in semiconductor manufacturing. Sensory data acquired from the semiconductor processing tool is too large to analyze for the purpose of fault detection and classification(FDC). We studied the techniques of fault detection using statistical method. Multiple regression analysis smoothly detected faults and can be easy made a model. For real-time and fast computing time, the huge data was analyzed by each step. We also considered interaction and critical factors in tool parameters and process.

  • PDF

Critical Review of Current Trends in ASIC Writing and Layout Analysis

  • Vikram, Abhishek;Agarwal, Vineeta
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.236-250
    • /
    • 2016
  • Electrical Designs for Application Specific Integrated Circuits (ASIC) has undergone a change recently with the advent of the sub-wavelength lithography. The optical projection with 193 nm wavelength has been further extended with the use of immersion and other techniques. The competing trends for printing smaller design features have been discussed in this paper with the discussion of the electrical layout analysis to find unfriendly design features. The early knowledge of the unfriendly design features allows remedial actions in time for better yield on the wafer. There are existing standard design qualification criteria being used in the design and fabrication community, but they seem to be insufficient to guarantee defect free designs. This paper proposes an integrated approach for screening the layout with multiple aspects: layout geometry based, graphical analysis and process model based verification. The results have been discussed with few example design features from the 28nm design layout.