• Title/Summary/Keyword: semiconductor package

Search Result 236, Processing Time 0.022 seconds

Numerical Study of Warpage and Stress for the Ultra Thin Package (수치해석에 의한 초박형 패키지의 휨 현상 및 응력 특성에 관한 연구)

  • Song, Cha-Gyu;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.49-60
    • /
    • 2010
  • Semiconductor packages are increasingly moving toward miniaturization, lighter and high performance. Futhermore, packages become thinner. Thin packages will generate serious reliability problems such as warpage, crack and other failures. Reliability problems are mainly caused by the CTE mismatch of various package materials. Therefore, proper selection of the package materials and geometrical optimization is very important for controlling the warpage and the stress of the package. In this study, we investigated the characteristics of the warpage and the stress of several packages currently used in mobile devices such as CABGA, fcSCP, SCSP, and MCP. Warpage and stress distribution are analyzed by the finite element simulation. Key material properties which affect the warpage of package are investigated such as the elastic moduli, CTEs of EMC molding and the substrate. Geometrical effects are also investigated including the thickness or size of EMC molding, silicon die and substrate. The simulation results indicate that the most influential factors on warpage are EMC molding thickness, CTE of EMC, elastic modulus of the substrate. Simulation results show that warpage is the largest for SCSP. In order to reduce the warpage, DOE optimization is performed, and the optimization results show that warpage of SCSP becomes $10{\mu}m$.

Numerical Analysis of Warpage and Reliability of Fan-out Wafer Level Package (수치해석을 이용한 팬 아웃 웨이퍼 레벨 패키지의 휨 경향 및 신뢰성 연구)

  • Lee, Mi Kyoung;Jeoung, Jin Wook;Ock, Jin Young;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • For mobile application, semiconductor packages are increasingly moving toward high density, miniaturization, lighter and multi-functions. Typical wafer level packages (WLP) is fan-in design, it can not meet high I/O requirement. The fan-out wafer level packages (FOWLPs) with reconfiguration technology have recently emerged as a new WLP technology. In FOWLP, warpage is one of the most critical issues since the thickness of FOWLP is thinner than traditional IC package and warpage of WLP is much larger than the die level package. Warpage affects the throughput and yield of the next manufacturing process as well as wafer handling and fabrication processability. In this study, we investigated the characteristics of warpage and main parameters which affect the warpage deformation of FOWLP using the finite element numerical simulation. In order to minimize the warpage, the characteristics of warpage for various epoxy mold compounds (EMCs) and carrier materials are investigated, and DOE optimization is also performed. In particular, warpage after EMC molding and after carrier detachment process were analyzed respectively. The simulation results indicate that the most influential factor on warpage is CTE of EMC after molding process. EMC material of low CTE and high Tg (glass transition temperature) will reduce the warpage. For carrier material, Alloy42 shows the lowest warpage. Therefore, considering the cost, oxidation and thermal conductivity, Alloy42 or SUS304 is recommend for a carrier material.

Experimental and Numerical Analysis of Package and Solder Ball Crack Reliability using Solid Epoxy Material (Solid Epoxy를 이용한 패키지 및 솔더 크랙 신뢰성 확보를 위한 실험 및 수치해석 연구)

  • Cho, Youngmin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • The use of underfill materials in semiconductor packages is not only important for stress relieving of the package, but also for improving the reliability of the package during shock and vibration. However, in recent years, as the size of the package becomes larger and very thin, the use of the underfill shows adverse effects and rather deteriorates the reliability of the package. To resolve these issues, we developed the package using a solid epoxy material to improve the reliability of the package as a substitute for underfill material. The developed solid epoxy was applied to the package of the application processor in smart phone, and the reliability of the package was evaluated using thermal cycling reliability tests and numerical analysis. In order to find the optimal solid epoxy material and process conditions for improving the reliability, the effects of various factors on the reliability, such as the application number of solid epoxy, type of PCB pad, and different solid epoxy materials, were investigated. The reliability test results indicated that the package with solid epoxy exhibited higher reliability than that without solid epoxy. The application of solid epoxy at six locations showed higher reliability than that of solid epoxy at four locations indicating that the solid epoxy plays a role in relieving stress of the package, thereby improving the reliability of the package. For the different types of PCB pad, NSMD (non-solder mask defined) pad showed higher reliability than the SMD (solder mask defined) pad. This is because the application of the NSMD pad is more advantageous in terms of thermomechanical stress reliability because the solderpad bond area is larger. In addition, for the different solid epoxy materials with different thermal expansion coefficients, the reliability was more improved when solid epoxy having lower thermal expansion coefficient was used.

Finite Element Analysis of an EMC Module for Selecting Epoxy (적합한 Epoxy 선정을 위한 EMC 모듈의 유한요소해석)

  • Lee, Joon-Seong;Hong, Hee-Rok;Jo, Gye-Hyeon;Park, Dong-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6419-6424
    • /
    • 2014
  • The use of the PMP (Protection Module Package) was proposed as a solution for the shorter battery lifetime. The PMP means that a protection circuit consists of a semiconductor single. In this study, basic research was carried out to select a suitable epoxy material of the EMC module through finite element analysis. First, the stress on the external force was compared by the flexural strength analysis. In the following thermal analysis, the temperature change of the EMC module and the internal part was compared using the calculated heating value. Finally, the filling ratio was compared with the injection of the melting epoxy in the EMC module.

A Study on the Thickness Measurement of Thin Film and the Flaw Detection of the Interface by Digital Signal Processing (디지털 신호처리에 의한 박판두께측정 및 접합경계면의 결함검출에 관한 연구)

  • Kim, Jae-Yeol;Yiu, Shin;Kim, Byung-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.123-127
    • /
    • 1997
  • Recently, it is gradually raised necessity that interface is measured accurately and managed in industrial circles and medical world, An Ultrasonic wave transmitted from a focused beam transducer is being expected as a powerful tool for NDE of micro-defect. The ultrasonic NDE of the defect is based on the form of the wave reflected form the interface In this study, regarding to the thickness of film which is in opaque object and thickness measurement was done by MEM-cepstrum analysis of received ultrasonic wave. In measument results, film thickness which is beyond distance resolution capacity was measured accurately. Also, automatically repeated discrimination analysis method can be decided in the category of all kinds of defects on semiconductor package.

  • PDF

A Study of the High Reliability in Plastic BGA Solder Joints (플라스틱 BGA 솔더접합부의 고신뢰성에 관한 연구)

  • Kim, Kyung-Seob;Shin, Young-Eui;Lee, Hyuk
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.90-95
    • /
    • 1999
  • The increase in high speed, multi-function and high I/O pin semiconductor devices highly demands high pin count, very thin, and high density packages. BGA is one of the solutions, but the package has demerits in package reliability, surface mounting problems due to the PCB warpage and solder joint crack related with TCE mismatch between the materials. On this study to verify the thermal fatigue lifetime of the solder joint FEM and experiments were performed after surface mounting BGA with different solder composition and reliability conditions. FEM showed optimum composition of Ag3.2-Sn96.5 and under the composition minimum creep deformation of the solder joint was calculated, and the thermal fatigue lifetime was improved. In view of temperature cycle condition, the conditions of $-65^{\circ}C$to $150^{\circ}C$ showed minimum lifetime and t was 1/3 of $0^{\circ}C$ to $125^{\circ}C$ condition. Test board was prepared and solder joint crack was verified. Until 1000cycle on soder joint crack was observed.

  • PDF

Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly (유연 반도체 패키지 접속을 위한 폴리머 탄성범프 범핑 공정 개발 및 범프 변형 거동 분석)

  • Lee, Jae Hak;Song, Jun-Yeob;Kim, Seung Man;Kim, Yong Jin;Park, Ah-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.31-43
    • /
    • 2019
  • In this study, polymer elastic bumps were fabricated for the flexible electronic package flip chip bonding and the viscoelastic and viscoplastic behavior of the polymer elastic bumps according to the temperature and load were analyzed using FEM and experiments. The polymer elastic bump is easy to deform by the bonding load, and it is confirmed that the bump height flatness problem is easily compensated and the stress concentration on thin chip is reduced remarkably. We also develop a spiral cap type and spoke cap type polymer elastic bump of $200{\mu}m$ diameter to complement Au metal cap crack phenomenon caused by excessive deformation of polymer elastic bump. The proposed polymer elastic bumps could reduce stress of metal wiring during bump deformation compared to metal cap bump, which is completely covered with metal wiring because the metal wiring on these bumps is partially patterned and easily deformable pattern. The spoke cap bump shows the lowest stress concentration in the metal wiring while maintaining the low contact resistance because the contact area between bump and pad was wider than that of the spiral cap bump.

3-Dimensional Numerical Analysis of Deep Depletion Buried Channel MOSFETs and CCDs

  • Kim Man-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.396-405
    • /
    • 2006
  • The visual analysis of buried channel (Be) devices such as buried channel MOSFETs and CCDs (Charge Coupled Devices) is investigated to give better understanding and insight for their electrical behaviours using a 3-dimensional (3-D) numerical simulation. This paper clearly demonstrates the capability of the numerical simulation of 'EVEREST' for characterising the analysis of a depletion mode MOSFET and BC CCD, which is a simulation software package of the semiconductor device. The inverse threshold and punch-through voltages obtained from the simulations showed an excellent agreement with those from the measurement involving errors of within approximately 1.8% and 6%, respectively, leading to the channel implanted doping profile of only approximately $4{\sim}5%$ error. For simulation of a buried channel CCD an advanced adaptive discretising technique was used to provide more accurate analysis for the potential barrier height between two channels and depletion depth of a deep depletion CCD, thereby reducing the CPU running time and computer storage requirements. The simulated result for the depletion depth also showed good agreement with the measurement. Thus, the results obtained from this simulation can be employed as the input data of a circuit simulator.

Electromigration and Thermomigration in Flip-Chip Joints in a High Wiring Density Semiconductor Package

  • Yamanaka, Kimihiro
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • Keys to high wiring density semiconductor packages include flip-chip bonding and build-up substrate technologies. The current issues are the establishment of a fine pitch flip-chip bonding technology and a low coefficient of thermal expansion (CTE) substrate technology. In particular, electromigration and thermomigration in fine pitch flipchip joints have been recognized as a major reliability issue. In this paper, electromigration and thermomigration in Cu/Sn-3Ag-0.5Cu (SAC305)/Cu flip-chip joints and electromigration in Cu/In/Cu flip chip joints are investigated. In the electromigration test, a large electromigration void nucleation at the cathode, large growth of intermetallic compounds (IMCs) at the anode, a unique solder bump deformation towards the cathode, and the significantly prolonged electromigration lifetime with the underfill were observed in both types of joints. In addition, the effects of crystallographic orientation of Sn on electromigration were observed in the Cu/SAC305/Cu joints. In the thermomigration test, Cu dissolution was accelerated on the hot side, and formation of IMCs was enhanced on the cold side at a thermal gradient of about $60^{\circ}C$/cm, which was lower than previously reported. The rate of Cu atom migration was found comparable to that of electromigration under current conditions.

Mechanical Tenacity Analysis of Moisture Barrier Bags for Semiconductor Packages

  • Kim, Keun-Soo;Kim, Tae-Seong;Min Yoo;Yoo, Hee-Yeoul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • We have been using Moisture Barrier Bags for dry packing of semiconductor packages to prevent moisture from absorbing during shipping. Moisture barrier bag material is required to be waterproof, vapor proof and offer superior ESD (Electro-static discharge) and EMI shielding. Also, the bag should be formed easily to the shape of products for vacuum packing while providing excellent puncture resistance and offer very low gas & moisture permeation. There are some problems like pinholes and punctured bags after sealing and before the surface mount process. This failure may easily result in package pop corn crack during board mounting. The bags should be developed to meet the requirements of excellent electrical and physical properties by means of optimization of their raw material composition and their thickness. This study investigates the performance of moisture barrier bags by characterization of their mechanical endurance, tensile strength and through thermal analysis. By this study, we arrived at a robust material composition (polyester/Aluminate) for better packing.

  • PDF