DOI QR코드

DOI QR Code

Experimental and Numerical Analysis of Package and Solder Ball Crack Reliability using Solid Epoxy Material

Solid Epoxy를 이용한 패키지 및 솔더 크랙 신뢰성 확보를 위한 실험 및 수치해석 연구

  • Cho, Youngmin (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology) ;
  • Choa, Sung-Hoon (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology)
  • 조영민 (서울과학기술대학교 나노IT디자인 융합기술대학원) ;
  • 좌성훈 (서울과학기술대학교 나노IT디자인 융합기술대학원)
  • Received : 2020.02.17
  • Accepted : 2020.03.03
  • Published : 2020.03.30

Abstract

The use of underfill materials in semiconductor packages is not only important for stress relieving of the package, but also for improving the reliability of the package during shock and vibration. However, in recent years, as the size of the package becomes larger and very thin, the use of the underfill shows adverse effects and rather deteriorates the reliability of the package. To resolve these issues, we developed the package using a solid epoxy material to improve the reliability of the package as a substitute for underfill material. The developed solid epoxy was applied to the package of the application processor in smart phone, and the reliability of the package was evaluated using thermal cycling reliability tests and numerical analysis. In order to find the optimal solid epoxy material and process conditions for improving the reliability, the effects of various factors on the reliability, such as the application number of solid epoxy, type of PCB pad, and different solid epoxy materials, were investigated. The reliability test results indicated that the package with solid epoxy exhibited higher reliability than that without solid epoxy. The application of solid epoxy at six locations showed higher reliability than that of solid epoxy at four locations indicating that the solid epoxy plays a role in relieving stress of the package, thereby improving the reliability of the package. For the different types of PCB pad, NSMD (non-solder mask defined) pad showed higher reliability than the SMD (solder mask defined) pad. This is because the application of the NSMD pad is more advantageous in terms of thermomechanical stress reliability because the solderpad bond area is larger. In addition, for the different solid epoxy materials with different thermal expansion coefficients, the reliability was more improved when solid epoxy having lower thermal expansion coefficient was used.

반도체 패키지에서 언더필의 사용은 패키지의 응력 완화 및 습기 방지에 중요할 뿐만 아니라, 충격, 진동 시에 패키지의 신뢰성을 향상시키는 중요한 소재이다. 그러나 최근 패키지의 크기가 커지고, 매우 얇아짐에 따라서 언더필의 사용이 오히려 패키지의 신뢰성을 저하하는 현상이 발견되고 있다. 이러한 이슈를 해결하기 위하여 본 연구에서는 언더필을 대신 할 소재로서 solid epoxy를 이용한 패키지를 개발하여 신뢰성을 향상시키고자 하였다. 개발된 solid epoxy를 스마트 폰의 AP 패키지에 적용하여 열사이클링 신뢰성 시험과 수치해석을 통하여 패키지의 신뢰성을 평가하였다. 신뢰성 향상을 위한 최적의 solid epoxy 소재 및 공정 조건을 찾기 위하여 solid epoxy 의 사용 개수, PCB 패드 타입 및 solid epoxy의 물성 등, 3 개의 인자가 패키지의 신뢰성에 미치는 영향을 고찰하였다. Solid epoxy를 AP 패키지에 적용한 결과 solid epoxy가 없는 경우 보다, solid epoxy를 적용한 경우가 신뢰성이 향상되었다. 또한 solid epoxy를 패키지의 외곽 4곳에 적용한 경우 보다는 6 곳에 적용한 경우가 더 신뢰성이 좋음을 알 수 있었다. 이는 solid epoxy가 패키지의 열팽창에 따른 응력을 완화 시키는 역할을 하여 패키지의 신뢰성이 향상되었음을 의미한다. 또한 PCB 패드 타입에 대한 신뢰성을 평가한 결과 NSMD (non-solder mask defined) 패드를 사용할 경우가 SMD (solder mask defined) 패드 보다 신뢰성이 더 향상됨을 알 수 있었다. NSMD 패드의 경우 솔더와 패드가 접합하는 면적이 더 크기 때문에 구조적으로 안정하여 신뢰성 측면에서 더 유리하기 때문이다. 또한 열팽창계수가 다른 solid epoxy를 적용하여 신뢰성 평가를 한 결과, 열팽창계수가 낮은 solid epoxy를 사용한 경우가 신뢰성이 더 향상됨을 알 수 있었다.

Keywords

References

  1. S. Kang, H. Choi, S. Park, C. Park, J. Lee, U. Lee, and S. J. Lee, "Fire in Your Hands: Understanding Thermal Behavior of Smartphones", The 25th Annu. Int. Conf. on Mobile Computing and Networking (MobiCom), Aug., 13, 1 (2019).
  2. K. H. Kim, H. Lee, J. W. Jeong, J. H. Kim, and S. H. Choa, "Numerical Analysis of Warpage and Stress for 4-layer Stacked FBGA Package", J. Microelectron. Packag. Soc., 19(2), 7 (2012). https://doi.org/10.6117/kmeps.2012.19.2.007
  3. H. G. Yang and J. W. Joo, "Measurement and Evaluation of Thermal Expansion Coefficient for Warpage Analysis of Package Substrate", Trans. Korean Soc. Mech. Eng. A, 38(10), 1049 (2014). https://doi.org/10.3795/KSME-A.2014.38.10.1049
  4. D. H. Park, D. M. Jung, and T. S. Oh, "Warpage Characteristics Analysis for Top Packages of Thin Package-on-Packages with Progress of Their Process Steps", J. Microelectron. Packag. Soc., 21(2), 65 (2014). https://doi.org/10.6117/kmeps.2014.21.2.065
  5. N. Jiang, L. Zhang, Z. Q. Liu, L. Sun, W. M. Long, P. He, M. Y. Xiong, and M. Zhao, "Reliability issues of lead-free solder joints in electronic devices", Sci. Technol. Adv. Mat., 20(1), 876 (2019). https://doi.org/10.1080/14686996.2019.1640072
  6. M. Mustafa, J. C. Suhling, and P. Lall, "Experimental determination of fatigue behavior of lead free solder joints in microelectronic packaging subjected to isothermal aging", Microelectron Reliab., 56, 136 (2016). https://doi.org/10.1016/j.microrel.2015.10.021
  7. M. C. Hsieh, C. C. Lee, and L. C. Hung, "Comprehensive Thermo-Mechanical Stress Analyses and Underfill Selection of Large Die Flip Chip BGA", IEEE Trans. Compon. Packag. Manuf. Technol., 3(7), 1155 (2013). https://doi.org/10.1109/TCPMT.2012.2232712
  8. Y. Song, S. B. Lee, S. H. Jeon, B. S. Yim, H. S. Chung, and J. M. Kim, "Underfill Flow Characteristics for Flip-Chip Packaging", J. Microelectron. Packag. Soc., 16(3), 39 (2009).
  9. J. M. Kim, D. F. Farson, and Y. E. Shin, "Improvement of Board Level Reliability for ${\mu}BGA$ Solder Joints Using Underfill", Mat. Trans., 44(10), 2175 (2003). https://doi.org/10.2320/matertrans.44.2175
  10. B. V. Chheda, S. M. Ramkumar, and R. Ghaffarian, "Thermal Shock and Drop Test Performance of Lead-Free Assemblies with No-Underfill, Corner-Underfill and Full-Underfill", Proc. 60th Electronic Components and Technology Conference (ECTC), 935 (2010).
  11. B. I. Noh, J. W. Yoon, S. O. Ha, and S. B. Jung, "Effects of Different Kinds of Underfills and Temperature-Humidity Treatments on Drop Reliability of Board-Level Packages", J. Electron. Mater., 40(2), 224 (2011). https://doi.org/10.1007/s11664-010-1423-x