• Title/Summary/Keyword: semiconductor industry

Search Result 714, Processing Time 0.035 seconds

An Analysis of Human Factor and Error for Human Error of the Semiconductor Industry (반도체 산업에서의 인적오류에 대한 인적요인과 과오에 대한 분석)

  • Yun, Yong-Gu;Park, Beom
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.04a
    • /
    • pp.113-123
    • /
    • 2007
  • Through so that accident of semiconductor industry deduces unsafe factor of the person center on unsafe behaviour that incident history and questionnaire and I made starting point that extract very important factor. It served as a momentum that make up base that analyzes factors that happen based on factor that extract factor cause classification for the first factor, the second factor and the third factor and presents model of human error. Factor for whole defines factor component for human factor and to cause analysis 1 stage in human factor and step that wish to do access of problem and it do analysis cause of data of 1 step. Also, see significant difference that analyzes interrelation between leading persons about human mistake in semiconductor industry and connect interrelation of mistake by this. Continuously, dictionary road map to human error theoretical background to basis traditional accidental cause model and modern accident cause model and leading persons. I wish to present model and new model in semiconductor industry by backbone that leading persons of existing scholars who present model of existent human error deduce relation. Finally, I wish to deduce backbone of model of pre-suppression about accident leading person of the person center.

  • PDF

Design of local exhaust ventilation for preventive maintenance in semiconductor fabrication industry using CFD (전산유체역학을 이용한 반도체 제조공정의 PM 전용 후드 설계 연구)

  • Hong, Jwaryung;Koo, Jae-Han;Park, Chang-Sup;Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.208-216
    • /
    • 2019
  • Objective: The aim of this study is to control residual chemicals or by-products generated in chambers during preventive maintenance (PM) in the semiconductor manufacturing industry. We designed local exhaust ventilation using computational fluid dynamics (CFD). Methods: The air flow characteristics and capture efficiency between rectangular and slot hoods were compared numerically. The software Fluent 18.1 was used to estimate uniform velocity distribution and capture efficiency for contaminants. A metal from group 15 in the periodic table was released at the bottom of the chamber to simulate emissions. Results: The slot hood had a higher capture efficiency than a rectangular hood under the same conditions because the slot hood provided uniform air flow and higher face velocity. Also, there was no rotating swirl in the plenum for slot, that is why slot had better efficiency than rectangular even though they had similar face velocity. With less than 10 slots, the capture efficiencies for contaminants were nearly 95%. The optimum conditions for a hood to achieve high efficiency was 8 to 10 slots and a face velocity over 1 m/s. Conclusions: Well-designed ventilation systems must consider both efficiency and convenience. For this study, a slot hood that had high capture efficiency and no work disturbance was designed. This will contribute to protection of the worker's health in a PM area and other areas as well. Also, this study confirms the possibility of the application CFD in the semiconductor fabrication industry.

Ambidextrous Leadership and Innovative Work Behavior: Evidence from South Korea Semiconductor Industry (양손잡이 리더십과 혁신적인 업무 행동: 한국 반도체 산업의 증거)

  • Henry Ameyaw Domfeh;Henry Ofori;Sora Yoon;Juyoung Kang
    • Journal of Information Technology Services
    • /
    • v.22 no.3
    • /
    • pp.1-27
    • /
    • 2023
  • The semiconductor industry is a competitive, complicated and a cyclical sector with a highly dynamic business climate which requires an effective leadership style to operate and succeed. This study explores the important issue of how leadership facilitates employee innovative work behaviors in the semiconductor industry. Based on the assumptions of the ambidextrous leadership theory and social exchange theory, we collected data from 300 workers employed in the semiconductor industry of South Korea. The study investigated (1) the impact of ambidextrous leadership on innovative work behavior, (2) the mediating effects of workers decision-making autonomy and workplace learning in the relationship between ambidextrous leadership and innovative work behavior, (3) the moderating role of resistance to change in the relationship between ambidextrous leadership and workplace learning, and (4) the moderating role of openness to experience in the relationship between ambidextrous leadership and innovative work behavior. SmartPLS 4 and SPSS v24 was used to analyze our data. The study revealed that ambidextrous leadership positively influences workers innovative work behavior. In addition, decision-making autonomy and workplace learning partially mediated the relationship between ambidextrous leadership and innovative work behavior. Moreover, resistance to change was found to be a significant moderator in the relationship between ambidextrous leadership and workplace learning. Based on these findings, we conclude that ambidextrous leadership is very imperative for semiconductor businesses seeking to foster employee innovative work behaviors. Theoretical and practical implications of the study are also discussed.

Hexagonal Material Flow Pattern for Next Generation Semiconductor Fabrication (차세대 반도체 펩을 위한 육각형 물류 구조의 설계)

  • Chung, Jae-Woo;Suh, Jung-Dae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.1
    • /
    • pp.42-51
    • /
    • 2010
  • The semiconductor industry is highly capital and technology intensive. Technology advancement on circuit design and process improvement requires chip makers continuously to invest a new fabrication facility that costs more than 3 billion US dollars. Especially major semiconductor companies recently started to discuss 450mm fabrication substituting existing 300mm fabrication of which facilities were initiated to build in 1998. If the plan is consolidated, the yield of 450mm facility would be more than doubled compared to existing 300mm facility. In steps of this important investment, facility layout has been acknowledged as one of the most important factors to be competitive in the market. This research proposes a new concept of semiconductor facility layout using hexagonal floor plan and its compatible material flow pattern. The main objective of this proposal is to improve the productivity of the unified layout that has been popularly used to build existing facilities. In this research, practical characteristics of the semiconductor fabrication are taken into account to develop a new layout alternative based on the analysis of Chung and Tanchoco (2009). The performance of the proposed layout alternative is analyzed using computer simulation and the results show that the new layout alternative outperforms the existing layout alternative, unified layout. However, a few questions on space efficiency to the new alternative were raised in communication with industry practitioners. These questions are left for a future study.

Recovery of Indium from Scrap

  • Han, Kenneth N.
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.3-7
    • /
    • 2001
  • Indium frequently associated with the semiconductor industry is becoming an important metal element widely used in industry. In this paper, its properties especially in relation to its recovery from scrap are reviewed and discussed. Also presented in this paper is how best indium can be recovered by the hydrometallurgical means.

  • PDF

Control of Object Transport Direction Using Vibration of Flexural Beam in Ultrasonic Transport System (초음파 이송장치에서 탄성 빔의 진동을 이용한 물체 이송방향 제어)

  • Jeong, Sang-Hwa;Park, Jin-Wan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1241-1246
    • /
    • 2007
  • In recent years, the semiconductor industry and the optical industry are developed rapidly. The recent demands have expanded for optical components such as the optical lens, the optical semiconductor and the measuring instrument. Object transport systems are driven typically by the magnetic field and the conveyer belt. Recent industry requires more faster and efficient transport system. However, conventional transport systems are not adequate for transportation of optical elements and semiconductors. The conveyor belts can damage precision optical elements by the contact force and magnetic systems can destroy the inner structure of semiconductor by the magnetic field. In this paper, the levitation transport system using ultrasonic wave is developed for transporting precision elements without damages. The steady state flexural vibration of the beam is expressed using Euler-Bernoulli beam theory. The transport direction of an object is examined according to phase difference and frequency. The theoretical results are verified by experiments.

  • PDF

Supply Chain Modeling based on the Manufacturing Characteristics for the Semiconductor Industry (반도체산업의 제조특성을 반영한 공급사슬 모델링)

  • Lee, Young-Hoon;Kim, Kyoung-Hoon
    • IE interfaces
    • /
    • v.13 no.3
    • /
    • pp.348-357
    • /
    • 2000
  • SCM(Supply Chain Management) is a new approach to satisfy customers via an integrated management for the whole business processes of the manufacturing from the raw material procurement to the product or service delivery to customers. Typically the semiconductor industry is the one whose supply chain network is distributed all over the world, and its manufacturing process has the particular characteristics which has to be considered in the modeling of supply chain. In this paper we suggest the push and pull type supply chain models based on the manufacturing characteristics and their mathematical formulation for the semiconductor industry. Push supply chain model pursuits the high throughput and the balance of the WIP flow, and pull supply chain model does to minimize the total cost of order-based manufacturing, distribution and transportation process in order to meet customer's request appropriately.

  • PDF

Research for the Mainly Cause of Safety-Management Sharp-type of Semiconductor Industry (To Center with Corporate Company) (반도체 산업의 안전관리 형태별에 따른 원인에 관한 연구 (협력업체 중심(中心)으로))

  • Yoon, Yong-Gu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.19-33
    • /
    • 2008
  • The study on semiconductor industrial accident in korea has been focused on frequencies of each type, employee, characteristics, cause and un-safety condition, behaviour and so on. Those attributes of semiconductor industrial accidents were usually analyzed independently, so that it was hard to provides a well-process and systematic guide lines for efficient safety management. There fore, there were a few studies based on comprehensive survey in terms of sharp-type of safe management. The questionnaire survey carried out for the workers(284) who were responsible for safety management in to center with corporate company with semiconductor industry the factor analysis showed that there were three factor of safety management. They were 1) Investment and operation and management for accident prevention, 2) Unsafe, safety management 3) General human error and behavior the industries of respondents were correlative with three group. Three Groups showed a statistically significant differences on the number of cases. Actually, the group with the larger investment and the better unsafe cause, human error a of accident prevention had a smaller cause of accident cases.

  • PDF

A Model Development of Injury Prevention for Application in the Semiconductor Industry (반도체 산업에서의 재해 예방 모델 개발)

  • Yoon, Yong-Gu;Hong, Sung-Man;Park, Peom
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.3
    • /
    • pp.1-11
    • /
    • 2002
  • It has been Management for stabilize Enterprise-Management for Economic demand for to Productivity, Automation, customer satisfaction, Especially Semiconductor-Industry has been, potential-risk in working to factory to machine equipment, all kinds of utility, gas, chemical, electronic, Fire. This study of basic-purpose has Research Different From as Follow to analysis and Solution For semiconductor product Factory of a actual point Data and specific-gravity to Relation for company-Injury. 1. It has been try to Injury-Tendency and cause-Analysis for our County-Manufacture-Occupation. 2, Semiconductor Injury of Actual-condition in Enforcement for problem and Analysis that Injury Problem has occupated it Submitted to Solution for ordinary Injury theory View to point Solve at for New Model has applicated to that nilem for processed to Solution.

Research Trends of Scheduling Techniques for Domestic Major Industries (국내 주요 산업별 스케줄링 기법의 연구동향)

  • Lee, Jae-yong;Shin, Moonsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • The up-to-date business environment for Korean manufacturers is very complex and rapidly changing. Especially, the companies have faced with various changes derived from small quantity batch production, diversification of customer demands, and short life cycles of products. Consequently, the Korean manufacturing companies are in need of more efficient production planning and scheduling techniques. In this paper, the research trend of scheduling techniques is investigated to provide relevant information to researchers in this field. Furthermore, some implications for future researches are presented regarding literatures published in Korea over the last 10 years. This paper presents an entire investigation into Korean research works on scheduling (2,569 papers) that are published from 2007 to 2016. Especially, detailed analysis was carried out in the following three industry : 1) semiconductor, 2) shipbuilding and 3) automobile. In this paper, approaches to scheduling presented in the literature are categorized into the following three categories : 1) application, 2) algorithm, and 3) simulation modeling. First, in the semiconductor industry, scheduling techniques related to semiconductor cleaning processes, photolithography processes, chemical processes, transport and transport equipment have been found to be dominant. Second, the shipbuilding industry is focused on assembly processes, transporter, crane and various existing production management system. On the other hand, the scheduling research of the automobile industry is mainly focused on the vehicle movement routing and procurement supply-chain planning algorithm in terms of logistics. The conclusion of this study are expected to provide many implications for various types of academic and practical follow-up studies related to scheduling in consideration of main characteristics of semiconductor, shipbuilding and automobile industries.