• Title/Summary/Keyword: semiconductor device modeling

Search Result 91, Processing Time 0.022 seconds

Stress Analysis in Cooling Process for Thermal Nanoimprint Lithography with Imprinting Temperature and Residual Layer Thickness of Polymer Resist

  • Kim, Nam Woong;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.68-74
    • /
    • 2017
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Up to now there have been a lot of researches on thermal NIL, but most of them have been focused on polymer deformation in the molding process and there are very few studies on the cooling and demolding process. In this paper a cooling process of the polymer resist in thermal NIL is analyzed with finite element method. The modeling of cooling process for mold, polymer resist and substrate is developed. And the cooling process is numerically investigated with the effects of imprinting temperature and residual layer thickness of polymer resist on stress distribution of the polymer resist. The results show that the lower imprinting temperature, the higher the maximum von Mises stress and that the thicker the residual layer, the greater maximum von Mises stress.

  • PDF

Study on Modeling of ZnO Power FET (ZnO Power FET 모델링에 관한 연구)

  • Kang, Ey-Goo;Chung, Hun-Suk
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.277-282
    • /
    • 2010
  • In this paper, we proposed ZnO trench Static Induction Transistor(SIT). Because The compound semiconductor had superior thermal characteristics, ZnO and SiC power devices is next generation power semiconductor devices. We carried out modeling of ZnO SIT with 2-D device and process simulator. As a result of modeling, we obtained 340V breakdown voltage. The channel thickness was 3um and the channel doping concentration is 1e17cm-3. And we carried out thermal characteristics, too.

Simulation of 4H-SiC MESFET for High Power and High Frequency Response

  • Chattopadhyay, S.N.;Pandey, P.;Overton, C.B.;Krishnamoorthy, S.;Leong, S.K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.251-263
    • /
    • 2008
  • In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-to-drain capacitance, drain-source resistance and trans-conductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 GHz and 29 GHz respectively were obtained from Sentaurus TCAD and verified by the Smith's chart.

Analytical Modeling of the IGBT Device for Transient Analysis Simulation (과도 해석 시뮬레이션을 위한 IGBT소자의 논리적인 모델링)

  • Seo, Yong-Soo;Jang, Seong-Chil;Kim, Yong-Chun;Cho, Moon-Taek;Seo, Soo-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.148-150
    • /
    • 1993
  • The IGBT(Insulated Gate Bipolar Transistor) is a power semiconductor device that has gained acceptance among power electronic circuit design engineers for motor drive and Power converter applications. The device-circuit interaction of power insulated gate bipolar transistor for a series-inductor load, both with and without a snubber are, simulated. An analytical model for the transient operation of the IGBT is used in conjunction with the load circuit state equations for the simulations.

  • PDF

Non-Quasi-Static RF Model for SOI FinFET and Its Verification

  • Kang, In-Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.160-164
    • /
    • 2010
  • The radio frequency (RF) model of SOI FinFETs with gate length of 40 nm is verified by using a 3-dimensional (3-D) device simulator. This paper shows the equivalent circuit model which can be used in the circuit analysis simulator. The RMS modeling error of Y-parameter was calculated to be only 0.3 %.

A Study of Establishment of Parameter and Modeling for Yield Estimation (수율 예측을 위한 변수 설정과 모델링에 대한 연구)

  • 김흥식;김진수;김태각;최민성
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.2
    • /
    • pp.46-52
    • /
    • 1993
  • The estimation of yield for semiconductor devices requires not only establishment of critical area but also a new parameter of process defect density that contains inspection mean defect density related cleanness of manufacure process line, minimum feature size and the total number of mask process. We estimate the repaired yield of memory devide, leads the semiconductor technique, repaired by redundancy scheme in relation with defect density distribution function, and we confirm the repaired yield for different devices as this model. This shows the possibility of the yield estimation as statistical analysis for the condition of device related cleanness of manufacture process line, design and manufacture process.

  • PDF

Design of 100-V Super-Junction Trench Power MOSFET with Low On-Resistance

  • Lho, Young-Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.134-137
    • /
    • 2012
  • Power metal-oxide semiconductor field-effect transistor (MOSFET) devices are widely used in power electronics applications, such as brushless direct current motors and power modules. For a conventional power MOSFET device such as trench double-diffused MOSFET (TDMOS), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. To overcome the tradeoff relationship, a super-junction (SJ) trench MOSFET (TMOSFET) structure is studied and designed in this letter. The processing conditions are proposed, and studies on the unit cell are performed for optimal design. The structure modeling and the characteristic analyses for doping density, potential distribution, electric field, width, and depth of trench in an SJ TMOSFET are performed and simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the specific on-state resistance of 1.2 $m{\Omega}-cm^2$ at the class of 100 V and 100 A is successfully optimized in the SJ TMOSFET, which has the better performance than TDMOS in design parameters.

OLED display manufacturing by Organic Vapor Phase Deposition

  • Marheineke, B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1676-1681
    • /
    • 2006
  • We report on Organic Vapor Phase Deposition $(OVPD^{(R)})$ an innovative deposition technology for organic light emitting device (OLED) and organic semiconductor manufacturing. The combination of $OVPD^{(R)}$ with Close Coupled Showerhead (CCS) technology results in manufacturing equipment with vast potential for cost effective manufacturing of OLED displays commercially competitive to LCD. The actual $OVPD^{(R)}$ equipment concept and design is discussed: Computational Fluid Dynamic (CFD) modeling is compared with experimental results proving the excellent controllability of the deposition process. Further other production relevant deposition properties are being reviewed e.g. high deposition rates and high organic material utilization efficiency of the $OVPD^{(R)}$ - Technology. Data from devices made by $OVPD^{(R)}$ show comparable/ superior performance to those fabricated with conventional vacuum thermal evaporation (VTE) techniques. An outlook on further potentials of $OVPD^{(R)}$ with respect to enabling advanced organic device structures is given.

  • PDF

A New Scaling Theory for the Effective Conducting Path Effect of Dual Material Surrounding Gate Nanoscale MOSFETs

  • Balamurugan, N.B.;Sankaranarayanan, K.;Suguna, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.92-97
    • /
    • 2008
  • In this Paper, we present a scaling theory for dual material surrounding gate (DMSGTs) MOSFETs, which gives a guidance for the device design and maintaining a precise subthreshold factor for given device parameters. By studying the subthreshold conducting phenomenon of DMSGTs, the effective conductive path effect (ECPE) is employed to acquire the natural length to guide the design. With ECPE, the minimum channel potential is used to monitor the subthreshold behavior. The effect of ECPE on scaling factor significantly improves the subthreshold swing compared to conventional scaling rule. This proposed model offers the basic designing guidance for dual material surrounding gate MOSFETs.

Compact Gate Capacitance Model with Polysilicon Depletion Effect for MOS Device

  • Abebe, H.;Morris, H.;Cumberbatch, E.;Tyree, V.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.209-213
    • /
    • 2007
  • The MOS gate capacitance model presented here is determined by directly solving the coupled Poisson equations on the poly and silicon sides, and includes the polysilicon (poly) gate depletion effect. Our compact gate capacitance model exhibits an excellent fit with measured data and parameter values extracted from data are physically acceptable. The data are collected from 0.5, 0.35, 0.25 and $0.18{\mu}m$ CMOS technologies.