• 제목/요약/키워드: semicommutative rings

검색결과 12건 처리시간 0.019초

On a Class of Semicommutative Rings

  • Ozen, Tahire;Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • 제51권3호
    • /
    • pp.283-291
    • /
    • 2011
  • In this paper, a generalization of the class of semicommutative rings is investigated. A ring R is called central semicommutative if for any a, b ${\in}$ R, ab = 0 implies arb is a central element of R for each r ${\in}$ R. We prove that some results on semicommutative rings can be extended to central semicommutative rings for this general settings.

Extensions of Strongly α-semicommutative Rings

  • Ayoub, Elshokry;Ali, Eltiyeb;Liu, ZhongKui
    • Kyungpook Mathematical Journal
    • /
    • 제58권2호
    • /
    • pp.203-219
    • /
    • 2018
  • This paper is devoted to the study of strongly ${\alpha}-semicommutative$ rings, a generalization of strongly semicommutative and ${\alpha}-rigid$ rings. Although the n-by-n upper triangular matrix ring over any ring with identity is not strongly ${\bar{\alpha}}-semicommutative$ for $n{\geq}2$, we show that a special subring of the upper triangular matrix ring over a reduced ring is strongly ${\bar{\alpha}}-semicommutative$ under some additional conditions. Moreover, it is shown that if R is strongly ${\alpha}-semicommutative$ with ${\alpha}(1)=1$ and S is a domain, then the Dorroh extension D of R by S is strongly ${\bar{\alpha}}-semicommutative$.

On Semicommutative Modules and Rings

  • Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • 제47권1호
    • /
    • pp.21-30
    • /
    • 2007
  • We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

  • PDF

Weakly Semicommutative Rings and Strongly Regular Rings

  • Wang, Long;Wei, Junchao
    • Kyungpook Mathematical Journal
    • /
    • 제54권1호
    • /
    • pp.65-72
    • /
    • 2014
  • A ring R is called weakly semicommutative ring if for any a, $b{\in}R^*$ = R\{0} with ab = 0, there exists $n{\geq}1$ such that either an $a^n{\neq}0$ and $a^nRb=0$ or $b^n{\neq}0$ and $aRb^n=0$. In this paper, many properties of weakly semicommutative rings are introduced, some known results are extended. Especially, we show that a ring R is a strongly regular ring if and only if R is a left SF-ring and weakly semicommutative ring.

GENERALIZED SEMI COMMUTATIVE RINGS AND THEIR EXTENSIONS

  • Baser, Muhittin;Harmanci, Abdullah;Kwak, Tai-Keun
    • 대한수학회보
    • /
    • 제45권2호
    • /
    • pp.285-297
    • /
    • 2008
  • For an endomorphism ${\alpha}$ of a ring R, the endomorphism ${\alpha}$ is called semicommutative if ab=0 implies $aR{\alpha}(b)$=0 for a ${\in}$ R. A ring R is called ${\alpha}$-semicommutative if there exists a semicommutative endomorphism ${\alpha}$ of R. In this paper, various results of semicommutative rings are extended to ${\alpha}$-semicommutative rings. In addition, we introduce the notion of an ${\alpha}$-skew power series Armendariz ring which is an extension of Armendariz property in a ring R by considering the polynomials in the skew power series ring $R[[x;\;{\alpha}]]$. We show that a number of interesting properties of a ring R transfer to its the skew power series ring $R[[x;\;{\alpha}]]$ and vice-versa such as the Baer property and the p.p.-property, when R is ${\alpha}$-skew power series Armendariz. Several known results relating to ${\alpha}$-rigid rings can be obtained as corollaries of our results.

SEMICOMMUTATIVE PROPERTY ON NILPOTENT PRODUCTS

  • Kim, Nam Kyun;Kwak, Tai Keun;Lee, Yang
    • 대한수학회지
    • /
    • 제51권6호
    • /
    • pp.1251-1267
    • /
    • 2014
  • The semicommutative property of rings was introduced initially by Bell, and has done important roles in noncommutative ring theory. This concept was generalized to one of nil-semicommutative by Chen. We first study some basic properties of nil-semicommutative rings. We next investigate the structure of Ore extensions when upper nilradicals are ${\sigma}$-rigid ${\delta}$-ideals, examining the nil-semicommutative ring property of Ore extensions and skew power series rings, where ${\sigma}$ is a ring endomorphism and ${\delta}$ is a ${\sigma}$-derivation.

ON WEAK ARMENDARIZ IDEALS

  • Hashemi, Ebrahim
    • 대한수학회논문집
    • /
    • 제23권3호
    • /
    • pp.333-342
    • /
    • 2008
  • We introduce weak Armendariz ideals which are a generalization of ideals have the weakly insertion of factors property (or simply weakly IFP) and investigate their properties. Moreover, we prove that, if I is a weak Armendariz ideal of R, then I[x] is a weak Armendariz ideal of R[x]. As a consequence, we show that, R is weak Armendariz if and only if R[x] is a weak Armendariz ring. Also we obtain a generalization of [8] and [9].

ON RADICALLY-SYMMETRIC IDEALS

  • Hashemi, Ebrahim
    • 대한수학회논문집
    • /
    • 제26권3호
    • /
    • pp.339-348
    • /
    • 2011
  • A ring R is called symmetric, if abc = 0 implies acb = 0 for a, b, c ${\in}$ R. An ideal I of a ring R is called symmetric (resp. radically-symmetric) if R=I (resp. R/$\sqrt{I}$) is a symmetric ring. We first show that symmetric ideals and ideals which have the insertion of factors property are radically-symmetric. We next show that if R is a semicommutative ring, then $T_n$(R) and R[x]=($x^n$) are radically-symmetric, where ($x^n$) is the ideal of R[x] generated by $x^n$. Also we give some examples of radically-symmetric ideals which are not symmetric. Connections between symmetric ideals of R and related ideals of some ring extensions are also shown. In particular we show that if R is a symmetric (or semicommutative) (${\alpha}$, ${\delta}$)-compatible ring, then R[x; ${\alpha}$, ${\delta}$] is a radically-symmetric ring. As a corollary we obtain a generalization of [13].

REVERSIBILITY OVER UPPER NILRADICALS

  • Jung, Da Woon;Lee, Chang Ik;Piao, Zhelin;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.447-454
    • /
    • 2020
  • The studies of reversible and NI rings have done important roles in noncommutative ring theory. A ring R shall be called QRUR if ab = 0 for a, b ∈ R implies that ba is contained in the upper nilradical of R, which is a generalization of the NI ring property. In this article we investigate the structure of QRUR rings and examine the QRUR property of several kinds of ring extensions including matrix rings and polynomial rings. We also show that if there exists a weakly semicommutative ring but not QRUR, then Köthe's conjecture does not hold.