• Title/Summary/Keyword: semi-field condition

Search Result 65, Processing Time 0.025 seconds

Seismic Response Analysis of Dam-Reservoir System Using Transmitting Boundary (전달경계를 이용한 댐-호소 계의 지진응답해석)

  • 조정래
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.123-132
    • /
    • 1999
  • One of the major difficulties in the seismic analysis of a dam-reservoir system is the treatment of the energy radiation in the upstream direction of the reservoir. In the paper, a new transmitting boundary is presented that can model properly the radiation of energy in the far field direction of a semi-infinite reservoir with constant depth. In the newly developed method, effects of surface wave motion are taken into accounted and the reservoir-foundation interaction is approximately accounted for with an absorbing boundary condition. If a dam has vertical upstream face and the infinitely long reservoir maintains constant depth, then the proposed transmitting boundary can be directly coupled with the model of dam body. In present study, the dam body is assumed to behave elastically and modeled by finite element method. Seismic responses of a dam model are investigated using the newly developed transmitting boundary.

  • PDF

Dynamic analysis of concrete gravity dam-reservoir systems by wavenumber approach in the frequency domain

  • Lotfi, Vahid;Samii, Ali
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.533-548
    • /
    • 2012
  • Dynamic analysis of concrete gravity dam-reservoir systems is an important topic in the study of fluid-structure interaction problems. It is well-known that the rigorous approach for solving this problem relies heavily on employing a two-dimensional semi-infinite fluid element. The hyper-element is formulated in frequency domain and its application in this field has led to many especial purpose programs which were demanding from programming point of view. In this study, a technique is proposed for dynamic analysis of dam-reservoir systems in the context of pure finite element programming which is referred to as the wavenumber approach. In this technique, the wavenumber condition is imposed on the truncation boundary or the upstream face of the near-field water domain. The method is initially described. Subsequently, the response of an idealized triangular dam-reservoir system is obtained by this approach, and the results are compared against the exact response. Based on this investigation, it is concluded that this approach can be envisaged as a great substitute for the rigorous type of analysis.

Effect of Cultivation Method on Growth and Storage Characteristics of Kimchi Cabbage Cultivar 'Chun Gwang' Grown on Semi-highland in Summer ('춘광' 배추의 준고랭지 여름철 재배 방법에 따른 생육과 저장 특성)

  • Lee, Jung-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.1
    • /
    • pp.25-33
    • /
    • 2021
  • This experiment was conducted to determine the effects of the pre- and post-harvest variable factors on the processed product of kimchi cabbage cultivated in semi-highland at summer time. Kimchi cabbage cultivar 'Chun Gwang' was grown in an open field and/or under a plastic greenhouse condition; it was stored at 0? after harvesting with low-density polyethylene (LDPE) film packaging. The pre-harvest characteristics growth parameters, fresh weight, head weight, no of leaves, leaf thickness, firmness, moisture content etc. were evaluated. The evaluated postharvest characteristics were fresh weight loss, appearance, trimming loss, SPAD value, moisture content and hue angle. The results show that the fresh weight and leaf thickness were higher in 'Chun Gwang' kimchi cabbages grown in the greenhouse than those in the field. However, the other evaluated factors were not affected by the type of cultural method. During the storage, the cabbage continued to decrease in fresh weight loss, trimming loss and moisture content. When compared to the kimchi cabbage showed significant difference in the fresh weight loss, trimming loss and moisture content during storage. It was confirmed that both cultural methods indoor- and outdoor did not show head growth parameters of 'Chun Gwang' kimchi cabbages on semi-high land at summer time. Although no difference in the growth before storage was observed, the evaluated characteristics like fresh weight loss etc. were influenced by cultural method as a pre-harvest factor. This study suggests that there were to be affected by pre-harvest factor during storage after harvest. In this study, an integrated management system combining relationship between processed agricultural products and their pre- and post-harvest factors.

Validation of Noise Prediction Theory Using Scaled Rotor Experiment for Hovering Condition (정지비행 조건에서의 축소 로터 실험을 통한 소음 예측 기법 검증)

  • Min, An-Ki;Ryi, Jae-Ha;Rhee, Wook;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.201-208
    • /
    • 2012
  • In this paper, a series of experiment is performed for a scaled hovering rotor in a semi-anechoic chamber and the results are compared to the noise spectra predicted by using Lowson's loading noise equation and FW-H equation. It was founded that the sound directivity pattern for both experiments and predictions are similar in their trend. Meanwhile the FW-H equation showed better agreement with experiments in the near-field noise spectra, but at the far-field the Lowson's equation performed better. The discrete noise are known to be proportional to the loading on the blades, which can be controlled by collective pitch angle of the blades. It was founded that the predicted spectra with FW-H equation come close to the measured noise spectra in low collective pitch, but in high collective pitch angles the Lowson's equation be more reliable.

THE CURVATURE TENSORS IN THE EINSTEIN′S *g- UNIFIED FIELD THEORY I. THE SE-CURVATURE TENSOR OF *g-SE $X_{n}$

  • Chung, Kyung-Tae;Chung, Phil-Ung;Hwang, In-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1045-1060
    • /
    • 1998
  • Recently, Chung and et al. ([11], 1991c) introduced a new concept of a manifold, denoted by *g-SE $X_{n}$ , in Einstein's n-dimensional *g-unified field theory. The manifold *g-SE $X_{n}$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor * $g^{λν}$ through the SE-connection which is both Einstein and semi-symmetric. In this paper, they proved a necessary and sufficient condition for the unique existence of SE-connection and presented a beautiful and surveyable tensorial representation of the SE-connection in terms of the tensor * $g^{λν}$. This paper is the first part of the following series of two papers: I. The SE-curvature tensor of *g-SE $X_{n}$ II. The contracted SE-curvature tensors of *g-SE $X_{n}$ In the present paper we investigate the properties of SE-curvature tensor of *g-SE $X_{n}$ , with main emphasis on the derivation of several useful generalized identities involving it. In our subsequent paper, we are concerned with contracted curvature tensors of *g-SE $X_{n}$ and several generalized identities involving them. In particular, we prove the first variation of the generalized Bianchi's identity in *g-SE $X_{n}$ , which has a great deal of useful physical applications.tions.

  • PDF

Time-dependent Deformation Behaviour of Queenston Shale (퀸스톤 제일의 시간의존적 변형거동)

  • 이영남
    • Geotechnical Engineering
    • /
    • v.5 no.2
    • /
    • pp.57-77
    • /
    • 1989
  • This paper describes the design and construction aspects of time-dependent deformation test apparatus for slut.oiling rocks and presents the test results obtained using these apparatus. These tests are modified semi-confined swell test, swell test under uniaxial tension and swell test under biaxial stress. These apparatus measure the time.dependent deformations in three orthogonal directions of the test specimen under simplified field stress conditions. The test results obtained from these test apparatus for the last several years show that these apparatus have performed satisfactorily. The test results show that the time-dependent deformation behaviour of the Queenston shale is cross-anisotropic with higher swelling in the vertical direction (normal to bedding plane) than in horizontal direction (parallel to bedding plane) under free swell condition. The applied stress in one direction suppresses the swelling deformation in that direction as well as that in the orthogonal directions.

  • PDF

Development of Numerical Simulation of Particle Method for Solving Incompressible Flow (비압축성 유동 해석을 위한 입자법 수치 시뮬레이션 기술 개발)

  • Lee, Byung-Hyuk;Ryu, Min-Cheol;Kim, Yong-Soo;Kim, Young-Hun;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.8-14
    • /
    • 2007
  • A particle method recognized as one of gridless methods has been developed to investigate incompressible viscous flaw. The method is more feasible and effective than conventional grid methods for solving the flaw field with complicated boundary shapes or multiple bodies. The method is consists of particle interaction models representing pressure gradient, diffusion, incompressibility and the boundary conditions. In the present study, the models in case of various simulation condition were checked with the analytic solution, and applied to the two-dimensional Poiseuille flow in order to validate the developed method.

A numerical analysis of sediment transport in an estuary (河口隣接 內 의 堆積物 輸送에 대한 數値모델 解釋)

  • 강시완;카알지
    • 한국해양학회지
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 1987
  • The transport and fate of fine-grained, cohesive sediments in an estuary were investigated numerically. A numerical model of sediment entrainment, deposition, and transport has been developed by incorporating recent results of laboratory and field investigations. The time-dependent flow fields produced by fiver inflow and semi-diurnal tides, were calculated, and the corresponding distributions of suspended-sediment concentrations were obtained. The time-changes of sediment bed condition due to entrainment and deposition were obtained. The entrained sediments contribute initially to high sediment concentrations in the estuary basin. As the time passes, the suspended-sediment concentrations were much reduced by the seaward transport due to residual currents. The erosional and dipositional areas were appeared to be strongly dependent on the current-velocity fields and sediment properties of the estuary.

  • PDF

Sliding Mode Control for Improving Performance of Mount with MR(Magneto-Rheological) Fluid (MR마운트 진동제어 성능 향상을 위한 슬라이딩 모드 제어)

  • Ahn, Young Kong;Kim, Sung-Ha;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.18-25
    • /
    • 2017
  • This paper deals with vibration control of a small mount with MR(Magneto-Rheological) fluid as a functional fluid mount for precision equipment of automobiles. Damping and stiffness coefficients of the mount with MR fluid are changed by variations of the applied magnetic field strength. We present the robust control scheme, based on a conventional sliding mode control theory, for the design of a stable controller that is capable of vibration control due to various disturbances such as impact and periodic excitations, and is insensitive to dynamic properties of the mount. We got stable controller by using Lyapunov stability theory. The controller is then realized by using a semi-active control condition in simulations. Chattering problem of the sliding mode control is eliminated by saturation function instead of signum function. The sliding mode control with Lyapunov stability theory is superior to passive and Sky-Hook control in performance.

A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment

  • Hajmohammad, Mohammad Hadi;Zarei, Mohammad Sharif;Farrokhian, Ahmad;Kolahchi, Reza
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.299-321
    • /
    • 2018
  • A layerwise shear deformation theory is applied in this paper for buckling analysis of piezoelectric truncated conical shell. The core is a multiphase nanocomposite reinforced by carbon nanotubes (CNTs) and carbon fibers. The top and bottom face sheets are piezoelectric subjected to 3D electric field and external voltage. The Halpin-Tsai model is used for obtaining the effective moisture and temperature dependent material properties of the core. The proposed layerwise theory is based on Mindlin's first-order shear deformation theory in each layer and results for a laminated truncated conical shell with three layers considering the continuity boundary condition. Applying energy method, the coupled motion equations are derived and analyzed using differential quadrature method (DQM) for different boundary conditions. The influences of some parameters such as boundary conditions, CNTs weight percent, cone semi vertex angle, geometrical parameters, moisture and temperature changes and external voltage are investigated on the buckling load of the smart structure. The results show that enhancing the CNTs weight percent, the buckling load increases. Furthermore, increasing the moisture and temperature changes decreases the buckling load.