• Title/Summary/Keyword: semi-elliptical plate

Search Result 21, Processing Time 0.033 seconds

반타원 표면균열의 피로성장 거동에 관한 연구

  • 최용식;양원호;방시항
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.916-922
    • /
    • 1986
  • This paper presents the preliminary results of an experimental study on surface crack growth under fatigue loadings. The objective of this paper is to assess the effect of the initial crack size on crack propagation behaviors. Transparent PMMA plate speciments with shallow circular arc notch were used. Crack growth behaviors were observed and measured in two directions by travelling microscopes. The fatigue crack initiated at the deepest part on the initial arc shaped notch and then propagated to depth direction as well as spreading gradually along the notch tip. A considerable number of cycles was needed until the depth crack spreaded to the surface notch tip. When the fatigue crack reached the surface notch tip the crack front became an approximate semi-ellipse, primary semi-elliptical crack. Test results suggest that the relationships between fatigue crack growth rate and stress intensity factor range in both directions can be expressed by power law (Paris) and that relationship in width direction depends upon the crack ratios a$_{1}$/b$_{1}$, of the primary semi-elliptical crack. The relationship between the nondimensional crack lengths in both directions can be represented as the formula: (a/t)$^{n}$ =B(2b/W+A) where n and A are constants and B is seems to be depended upon the crack ratio a$_{1}$/b$_{1}$.

Flaw Analysis Based Life Assessment of Welded Tubular Joint (결함해석에 기초한 배관용접부 수명평가)

  • Lee, Hyeong-Il;Han, Tae-Su;Jeong, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1331-1342
    • /
    • 2000
  • In power generation systems a variety of structural components typically operate at high temperature and pressure. Therefore a life assessment methodology accounting for gradual creep fracture is increasingly needed for these components. The most critical defects in such structure are generally found in the form of semi-elliptical surface cracks in the welded tubular joints. Therefore the analysis of a semi-elliptical surface crack in a plate or a shell is an important problem in engineering fracture mechanics. On this background, via shell/line-spring finite element analyses of such surface cracks in the welded T and L joints under various loadings, we investigate J-integral along the crack front We first develop T and L joints auto mesh generation program providing ABAQUS input file composed of shell/line-spring finite elements. We then further develop a T and L joints life assessment program based on the experimental creep crack growth law and auto mesh generation program in a graphical user interface format Finally the remaining life of T and L joints for various analytical parameters are assessed using the developed life assessment program.

Prediction of Bending Fatigue Life of Cracked Out-of-Plane Gusset Joint Repaired by CFRP Plates

  • Matsumoto, Risa;Komoto, Takafumi;Ishikawa, Toshiyuki;Hattori, Atsushi;Kawano, Hirotaka
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1284-1296
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP), plates bonding repair method is one of the simple repair methods for cracked steel structures. In this study, the influence of width of CFRP plates on bending fatigue life of out-of-plane gusset joint strengthened with CFRP plates was investigated from the experimental and numerical point of view. In the bending fatigue test of cracked out-of-plane gusset joint strengthened with CFRP plates, the effect of width of CFRP plates on crack growth life was clarified experimentally. Namely, it was revealed that the crack growth life becomes larger with increasing the width of CFRP plates. In the numerical approach, the stress intensity factor (SIF) at the surface point of a semi-elliptical surface crack was estimated based on the linear fracture mechanics. Furthermore, the extended fatigue life of cracked out-of-plane gusset joint strengthened with CFRP plates was evaluated by using the estimated SIF at the surface point and the empirical formula of the aspect ratio of semi-elliptical crack. As the results of numerical analysis, the estimated fatigue life of the specimen strengthened with CFRP plates showed the good agreement with the test results.

Fatigue Crack Initiation and Propagation at Notches (노치 에서의 피로 균열 발생 과 전파 에 관한 연구)

  • 이강용;이택성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.141-144
    • /
    • 1984
  • The fatigue limits of crack initiation and propagation on the edge elliptical notched semi-infinite plate under completely reversed fatigue stress are determined theoretically. Assuming that the crack initiation and propagation occur when stress intensity factors of notched plate reach the critical values obtained from critical micro-crack length under plain fatigue limit loading and the threshold stress intensity factory, respectively, the fatigue limits of crack initiation and propagation are obtained. The induced theoretical fatigue limit of crack initiation is expressed in terms of plain fatigue limit, critical micro-crack length and notch shape. The one of crack propagation is in terms of threshold stress intensity factor, plain fatigue limit and notch shape. These theoretical results are showed to be in good agreement of Frost's experimental data.

Fatigue Crack Growth Characteristics by the Cover Plate Shapes in the Steel Plate Girder (강판항(鋼板桁) 덮개판 형상에 따른 피로균열성장특성)

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Jung, Jin-Suck;Lee, Hyung-Koon
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.269-278
    • /
    • 1999
  • When a variety of repeated loads are given, most steel structures failed in much lower level of loads than static failure loads. In addition, bridge always includes the internal defects or discontinuities. from these, fatigue cracks initiates and can lead to sudden failure. Thus, in this study, tensile specimens by the cover plate shapes were used as the test specimens. The fatigue test was performed by constant amplitude fatigue loading and beach mark. From the results of this study, each specimen's fatigue section was observed. in addition, stress intensity factor at crack tip was calculated by using the Green's function which applied to discontinuous section where causing stress concentration. Therefore, the fatigue life of structural detail was investigated by adopting the theories of fracture mechanics. each specimen's crack shape is a semi-elliptical surface crack or center crack sheet, stress gradient correction factor, Fg is the most subjective of all stress intensity correction factors and fatigue life should be predicted by previous proposed function and finite element analysis.

  • PDF

Stress Intensity factor Analysis for Three-Dimensional Cracks in Inhomogeneous Materials (비균질재료의 3차원 균열에 대한 응력확대계수 해석)

  • 김준수;이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.197-203
    • /
    • 2003
  • Accurate stress intensity factor analyses and crack growth rate of surface -cracked components in inhomogeneous materials are needed fur reliable prediction of their fatigue life and fracture strengths. This paper describes an automated stress intensity factor analysis of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor fur subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

Stress Intensity Factor Analysis for Surface Crack in Inhomogeneous Materials (비균질재료의 표면균열에 대한 응력확대계수 해석)

  • 김준수;이준성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.816-819
    • /
    • 2002
  • Accurate stress intensity factor analyses and crack growth rate of surface-cracked components in inhomogeneous materials are needed for reliable prediction of their fatigue lift and fracture strengths. This paper describes an automated system for analyzing the stress intensity factors of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor for subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks.

  • PDF

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

Engineering Elastic-Plastic Fracture Analysis for Semi-Elliptical Surface Cracked Plates Under Combined Bending and Tension (복합하중을 받는 평판에 존재하는 반타원 표면균열의 공학적 탄소성 파괴해석법)

  • Shim, Do-Jun;Kim, Yun-Jae;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1127-1134
    • /
    • 2002
  • The present paper provides an engineering J estimation equation for surface cracked plates under combined bending and tension. The proposed equation is based on the reference stress approach, and the most relevant normalising loads to define the reference stress for accurate J estimations are given for surface cracked plates under combined bending and tension. Comparisons with J results from extensive 3-D FE analyses, covering a wide range of crack geometry, plate geometry and loading combination, show overall good agreement not only at the deepest point but also at arbitrary points along the crack front. for pure tension, agreement between the estimated J and the FE results is excellent, even at the surface point. On the other hand, for pure bending and combined bending and tension, the estimated J values become less accurate for locations close to the surface point. Thus the results in this paper will be useful to assess short-term fracture or low cycle fatigue of surface defects in plates under combined bending and tension.

Automation of Analysis for Stress Intensity Factor of 3-D Cracks (3차원 균열의 응력확대계수에 대한 해석의 자동화)

  • 이준성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.496-500
    • /
    • 1997
  • This paper describes an automated system for analyzing the stress intensity factors(SIFs) of three-dimensional (3D) cracks. A geometry model, i.e.a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delauuay triangulation techniques. The singular elements such that the mid-point nodes near crack fornt are shifted at the quarter-points are automatically placed along the 3D crack front. THe complete finite element (FE) model generated, i.e the mesh with material properties and boundary conditions is given to one of the commercial FE codes, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performance of the present system, a semi- elliptical surface crack in a plate subjected to tension is solved.

  • PDF