• Title/Summary/Keyword: semantic topic

Search Result 190, Processing Time 0.022 seconds

A Study on Distribution Query Conversion Method for Real-time Integrating Retrieval based on TMDR (TMDR 기반의 실시간 통합 검색을 위한 분산질의 변환 기법에 대한 연구)

  • Hwang, Chi-Gon;Shin, Hyo-Young;Jung, Kye-Dong;Choi, Young-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1701-1707
    • /
    • 2010
  • This study is intended for implementing the system environment that can help integrate and retrieve various types of data in real-time by providing semantic interoperability among distributed heterogeneous information systems. The semantic interoperability is made possible by providing a TMDR(Topicmaps Metadata Registry), a set of ontologies. TMDR, which has been made by combining MDR(MetaData Registry) and TopicMaps and storing them in the database, is able to generate distributed query and provide efficient knowledge. MDR is a metadata management technique for distributed data management. TopicMaps is an ontology representation technique that takes into consideration the hierarchy and association for accessing knowledge data. We have created TMDR, a kind of ontology, that is fit for any system and able to detect and resolve semantic conflicts on the level of data and schema. With this system we propose a query-processing technique to integrate and access heterogeneous information sources. Unlike existing retrieval methods this makes possible efficient retrieval and reasoning by providing association focusing on subjects.

'Korean Wave' News Analysis Using News Big Data ('한류' 경향에 관한 국내 언론 기사 빅데이터 분석 연구)

  • Hwang, Seo-I;Park, Jeong-Bae
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.5
    • /
    • pp.1-14
    • /
    • 2020
  • This study conducted a topic modeling and semantic network analysis of 'korean wave' and its meaning in Korean society from 2000 to 2019 by applying an agenda setting theory. For this purpose, a total of 197,992 newspaper articles which reported 'korean wave' issues were analyzed by applying topic modeling and semantic network analysis. As a result, first, the word 'korean wave' mainly appeared in korean-related regions in the korean press. culture and economy. second, a total of 9 topics related to korean wave issues appeared. This was followed by 'broadcast', 'export', 'domestic and foreign affairs', 'education', 'beauty and fashion', 'music and performance', 'tourism', 'media(platform)', and 'region'. Lastly, korean wave was mainly discussed at the cultural and economic ares. In addition, it was clustered into five characteristics: 'cultural hallyu', 'business hallyu', 'education', 'environment', and 'geography'.

A Study on the News Frame of COVID-19 Vaccine through Structural Topic Modeling and Semantic Network Analysis

  • Eun-Ji Yun;Bo-Young Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.129-153
    • /
    • 2023
  • This study was conducted in the context of the Covid-19 pandemic by analyzing a large amount of press report frames regarding the Covid-19 vaccine which is of great public interest, in order to explore the role and direction of trusted media as core elements of crisis communication. The study period lasted for eight months beginning in November 2020 when the development of the Covid-19 vaccine was in progress until June 2021. Set-up as research subjects were the Chosun Ilbo, Joongang Ilbo, Dong-A Ilbo and Hankyoreh according to their public confidence rankings and number of readers.The analysis method used structured topic Modeling (STM) and semantic network analysis. As a result, based on a clear cluster of word structures and a central analysis value, a total of 64 relevant frames, 16 for each news company, were gathered. In the third phase a comparative analysis of the four news companies was carried out to verify the organizational degree of the frames and substantial differences.

Ontology Semantic Mapping based Data Integration of CAD and PDM System (온톨로지 의미 매핑 기반 CAD 및 PDM 시스템 정보 통합)

  • Lee Min-Jung;Jung Won-Cheol;Lee Jae-Hyun;Suh Hyo-Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.181-186
    • /
    • 2005
  • In collaborative environment, it is necessary that the participants in collaboration should share the same understanding about the semantics of terms. For example, they should know that 'Part' and 'Item' are different word-expressions for the same meaning. In this paper, we consider sharing between CAD and PDM data. In order to handle such problems in information sharing, an information system needs to automatically recognize that the terms have the same semantics. Serving this purpose, the semantic mapping logic and the ontology based mapper system is described in this paper. In the semantic mapping logic topic, we introduce our logic that consists of four modules: Character Matching, Instance Reasoning, definition comparing and Similarity Checking. In the ontology based mapper, we introduce the system architecture and the mapping procedure.

  • PDF

Collaborative Filtering Recommendation Algorithm Based on LDA2Vec Topic Model (LDA2Vec 항목 모델을 기반으로 한 협업 필터링 권장 알고리즘)

  • Xin, Zhang;Lee, Scott Uk-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.385-386
    • /
    • 2020
  • In this paper, we propose a collaborative filtering recommendation algorithm based on the LDA2Vec topic model. By extracting and analyzing the article's content, calculate their semantic similarity then combine the traditional collaborative filtering algorithm to recommend. This approach may promote the system's recommend accuracy.

  • PDF

Research Trend on Diabetes Mobile Applications: Text Network Analysis and Topic Modeling (당뇨병 모바일 앱 관련 연구동향: 텍스트 네트워크 분석 및 토픽 모델링)

  • Park, Seungmi;Kwak, Eunju;Kim, Youngji
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.3
    • /
    • pp.170-179
    • /
    • 2021
  • Purpose: The aim of this study was to identify core keywords and topic groups in the 'Diabetes mellitus and mobile applications' field of research for better understanding research trends in the past 20 years. Methods: This study was a text-mining and topic modeling study including four steps such as 'collecting abstracts', 'extracting and cleaning semantic morphemes', 'building a co-occurrence matrix', and 'analyzing network features and clustering topic groups'. Results: A total of 789 papers published between 2002 and 2021 were found in databases (Springer). Among them, 435 words were extracted from 118 articles selected according to the conditions: 'analyzed by text network analysis and topic modeling'. The core keywords were 'self-management', 'intervention', 'health', 'support', 'technique' and 'system'. Through the topic modeling analysis, four themes were derived: 'intervention', 'blood glucose level control', 'self-management' and 'mobile health'. The main topic of this study was 'self-management'. Conclusion: While more recent work has investigated mobile applications, the highest feature was related to self-management in the diabetes care and prevention. Nursing interventions utilizing mobile application are expected to not only effective and powerful glycemic control and self-management tools, but can be also used for patient-driven lifestyle modification.

An Analysis of Arts Management-Related Studies' Trend in Korea using Topic Modeling and Semantic Network Analysis (토픽모델링과 의미연결망분석을 활용한 한국 예술경영 연구의 동향 변화 - 1988년부터 2017년까지 국내 학술논문 분석을 중심으로 -)

  • Hwang, SeoI;Park, Yang Woo
    • Korean Association of Arts Management
    • /
    • no.50
    • /
    • pp.5-31
    • /
    • 2019
  • The main purpose of this study was to use Deep Learning based Topic Modeling and Semantic Network Analysis to examine research trend of arts management-related papers in korea. For this purpose, research subjects such as 'The Journal of Cultural Policy', 'The Journal of Cultural Economics', 'The Journal of Culture Industry', 'The Journal of Arts Management', and 'The Journal of Human Content', which are the registered journal of the National Research Foundation of Korea directly or indirectly related to arts management field. From 1988 to 2017, a total of 2,110 domestic journals' signature, abstract, and keyword were analyzed. We tried Big Data analysis such as Topic Modeling and Semantic Network Analysis to examine changes in trends in arts management. The analysis program used open software R and standard statistical software SPSS. Based on the results of the analysis, the implications and limitations of the study and suggestions for future research were discussed. And the potential for development of convergent research such as Arts & Artificial Intelligence and Arts & Big Data.

A Process-Centered Knowledge Model for Analysis of Technology Innovation Procedures

  • Chun, Seungsu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1442-1453
    • /
    • 2016
  • Now, there are prodigiously expanding worldwide economic networks in the information society, which require their social structural changes through technology innovations. This paper so tries to formally define a process-centered knowledge model to be used to analyze policy-making procedures on technology innovations. The eventual goal of the proposed knowledge model is to apply itself to analyze a topic network based upon composite keywords from a document written in a natural language format during the technology innovation procedures. Knowledge model is created to topic network that compositing driven keyword through text mining from natural language in document. And we show that the way of analyzing knowledge model and automatically generating feature keyword and relation properties into topic networks.

Comparing Corporate and Public ESG Perceptions Using Text Mining and ChatGPT Analysis: Based on Sustainability Reports and Social Media (텍스트마이닝과 ChatGPT 분석을 활용한 기업과 대중의 ESG 인식 비교: 지속가능경영보고서와 소셜미디어를 기반으로)

  • Jae-Hoon Choi;Sung-Byung Yang;Sang-Hyeak Yoon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.347-373
    • /
    • 2023
  • As the significance of ESG (Environmental, Social, and Governance) management amplifies in driving sustainable growth, this study delves into and compares ESG trends and interrelationships from both corporate and societal viewpoints. Employing a combination of Latent Dirichlet Allocation Topic Modeling (LDA) and Semantic Network Analysis, we analyzed sustainability reports alongside corresponding social media datasets. Additionally, an in-depth examination of social media content was conducted using Joint Sentiment Topic Modeling (JST), further enriched by Semantic Network Analysis (SNA). Complementing text mining analysis with the assistance of ChatGPT, this study identified 25 different ESG topics. It highlighted differences between companies aiming to avoid risks and build trust, and the general public's diverse concerns like investment options and working conditions. Key terms like 'greenwashing,' 'serious accidents,' and 'boycotts' show that many people doubt how companies handle ESG issues. The findings from this study set the foundation for a plan that serves key ESG groups, including businesses, government agencies, customers, and investors. This study also provide to guide the creation of more trustworthy and effective ESG strategies, helping to direct the discussion on ESG effectiveness.

The Stream of Uncertainty in Scientific Knowledge using Topic Modeling (토픽 모델링 기반 과학적 지식의 불확실성의 흐름에 관한 연구)

  • Heo, Go Eun
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.1
    • /
    • pp.191-213
    • /
    • 2019
  • The process of obtaining scientific knowledge is conducted through research. Researchers deal with the uncertainty of science and establish certainty of scientific knowledge. In other words, in order to obtain scientific knowledge, uncertainty is an essential step that must be performed. The existing studies were predominantly performed through a hedging study of linguistic approaches and constructed corpus with uncertainty word manually in computational linguistics. They have only been able to identify characteristics of uncertainty in a particular research field based on the simple frequency. Therefore, in this study, we examine pattern of scientific knowledge based on uncertainty word according to the passage of time in biomedical literature where biomedical claims in sentences play an important role. For this purpose, biomedical propositions are analyzed based on semantic predications provided by UMLS and DMR topic modeling which is useful method to identify patterns in disciplines is applied to understand the trend of entity based topic with uncertainty. As time goes by, the development of research has been confirmed that uncertainty in scientific knowledge is moving toward a decreasing pattern.