• Title/Summary/Keyword: semantic networks

Search Result 172, Processing Time 0.022 seconds

Study on Agenda-Setting Structure between SNS and News: Focusing on Application of Network Agenda-Setting

  • Kweon, Sang-Hee;Go, Taeseong;Kang, Bo-young;Cha, Min-Kyung;Kim, Se-Jin;Kweon, Hea-Ji
    • International Journal of Contents
    • /
    • v.15 no.1
    • /
    • pp.10-24
    • /
    • 2019
  • This study applied network agenda-setting theory to analyze the impact of the agenda-setting function of the media on certain issues by focusing on the agenda at the center of controversy, 'Creative Economy'. To this end, the study extracted the data referred to creative economy in the media and SNS from 1 January 2008 to 31 December 2014, and analyzed the data using the network analysis program UCINET and the Korean language analysis program Textom. The results of the present study show that, during the period under former President Lee (2008-2011), the media's creative economy agenda-setting function did not exert a significant impact on the agenda-setting within SNS. However, from 2012 when the government of former President Park Geun-hye had started, the agenda-setting function of the media starts to show increasingly strong influence on the agenda cognition in SNS. The central words and sub-words configuration forming the center of the semantic network moved in the direction of a high correlation, in addition to the gradually increasing correlation based on QAP correlation analysis. In 2014, the semantic networks of the media and SNS bore a close resemblance to each other, while the shape of networks and sub-words structure also had a high level of similarity.

Phrase-Chunk Level Hierarchical Attention Networks for Arabic Sentiment Analysis

  • Abdelmawgoud M. Meabed;Sherif Mahdy Abdou;Mervat Hassan Gheith
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.120-128
    • /
    • 2023
  • In this work, we have presented ATSA, a hierarchical attention deep learning model for Arabic sentiment analysis. ATSA was proposed by addressing several challenges and limitations that arise when applying the classical models to perform opinion mining in Arabic. Arabic-specific challenges including the morphological complexity and language sparsity were addressed by modeling semantic composition at the Arabic morphological analysis after performing tokenization. ATSA proposed to perform phrase-chunks sentiment embedding to provide a broader set of features that cover syntactic, semantic, and sentiment information. We used phrase structure parser to generate syntactic parse trees that are used as a reference for ATSA. This allowed modeling semantic and sentiment composition following the natural order in which words and phrase-chunks are combined in a sentence. The proposed model was evaluated on three Arabic corpora that correspond to different genres (newswire, online comments, and tweets) and different writing styles (MSA and dialectal Arabic). Experiments showed that each of the proposed contributions in ATSA was able to achieve significant improvement. The combination of all contributions, which makes up for the complete ATSA model, was able to improve the classification accuracy by 3% and 2% on Tweets and Hotel reviews datasets, respectively, compared to the existing models.

Deep Multi-task Network for Simultaneous Hazy Image Semantic Segmentation and Dehazing (안개영상의 의미론적 분할 및 안개제거를 위한 심층 멀티태스크 네트워크)

  • Song, Taeyong;Jang, Hyunsung;Ha, Namkoo;Yeon, Yoonmo;Kwon, Kuyong;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1000-1010
    • /
    • 2019
  • Image semantic segmentation and dehazing are key tasks in the computer vision. In recent years, researches in both tasks have achieved substantial improvements in performance with the development of Convolutional Neural Network (CNN). However, most of the previous works for semantic segmentation assume the images are captured in clear weather and show degraded performance under hazy images with low contrast and faded color. Meanwhile, dehazing aims to recover clear image given observed hazy image, which is an ill-posed problem and can be alleviated with additional information about the image. In this work, we propose a deep multi-task network for simultaneous semantic segmentation and dehazing. The proposed network takes single haze image as input and predicts dense semantic segmentation map and clear image. The visual information getting refined during the dehazing process can help the recognition task of semantic segmentation. On the other hand, semantic features obtained during the semantic segmentation process can provide cues for color priors for objects, which can help dehazing process. Experimental results demonstrate the effectiveness of the proposed multi-task approach, showing improved performance compared to the separate networks.

Access Control to Objects and their Description in the Future Network of Information

  • Renault, Eric;Ahmad, Ahmad;Abid, Mohamed
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.359-374
    • /
    • 2010
  • The Future Internet that includes Real World Objects and the Internet of Things together with the more classic web pages will move communications from a nodecentric organization to an information-centric network allowing new a paradigm to take place. The 4WARD project initiated some works on the Future Internet. One of them is the creation of a Network of Information designed to enable more powerful semantic searches. In this paper, we propose a security solution for a model of information based on a semantic description and search of objects. The proposed solution takes into account both the access and the management of both objects and their descriptions.

A Visualization of Movie Review based on a Semantic Network Analysis (의미연결망 분석을 활용한 영화 리뷰 시각화)

  • Kim, Seul-gi;Kim, Jang Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.197-200
    • /
    • 2018
  • The aim of current research is to suggest a interface for movie reviews at a glance through semantic network analysis. The implication of this study is to systematically investigate the structure of eWoM. Specifically, by visualizing semantic networks of movie reviews this study attempts to provide a prototype of a possible review system that can check the response of movie viewer at a glance.

  • PDF

Multi-Path Feature Fusion Module for Semantic Segmentation (다중 경로 특징점 융합 기반의 의미론적 영상 분할 기법)

  • Park, Sangyong;Heo, Yong Seok
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • In this paper, we present a new architecture for semantic segmentation. Semantic segmentation aims at a pixel-wise classification which is important to fully understand images. Previous semantic segmentation networks use features of multi-layers in the encoder to predict final results. However, they do not contain various receptive fields in the multi-layers features, which easily lead to inaccurate results for boundaries between different classes and small objects. To solve this problem, we propose a multi-path feature fusion module that allows for features of each layers to contain various receptive fields by use of a set of dilated convolutions with different dilatation rates. Various experiments demonstrate that our method outperforms previous methods in terms of mean intersection over unit (mIoU).

I-QANet: Improved Machine Reading Comprehension using Graph Convolutional Networks (I-QANet: 그래프 컨볼루션 네트워크를 활용한 향상된 기계독해)

  • Kim, Jeong-Hoon;Kim, Jun-Yeong;Park, Jun;Park, Sung-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1643-1652
    • /
    • 2022
  • Most of the existing machine reading research has used Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) algorithms as networks. Among them, RNN was slow in training, and Question Answering Network (QANet) was announced to improve training speed. QANet is a model composed of CNN and self-attention. CNN extracts semantic and syntactic information well from the local corpus, but there is a limit to extracting the corresponding information from the global corpus. Graph Convolutional Networks (GCN) extracts semantic and syntactic information relatively well from the global corpus. In this paper, to take advantage of this strength of GCN, we propose I-QANet, which changed the CNN of QANet to GCN. The proposed model performed 1.2 times faster than the baseline in the Stanford Question Answering Dataset (SQuAD) dataset and showed 0.2% higher performance in Exact Match (EM) and 0.7% higher in F1. Furthermore, in the Korean Question Answering Dataset (KorQuAD) dataset consisting only of Korean, the learning time was 1.1 times faster than the baseline, and the EM and F1 performance were also 0.9% and 0.7% higher, respectively.

Semantic Document-Retrieval Based on Markov Logic (마코프 논리 기반의 시맨틱 문서 검색)

  • Hwang, Kyu-Baek;Bong, Seong-Yong;Ku, Hyeon-Seo;Paek, Eun-Ok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.663-667
    • /
    • 2010
  • A simple approach to semantic document-retrieval is to measure document similarity based on the bag-of-words representation, e.g., cosine similarity between two document vectors. However, such a syntactic method hardly considers the semantic similarity between documents, often producing semantically-unsound search results. We circumvent such a problem by combining supervised machine learning techniques with ontology information based on Markov logic. Specifically, Markov logic networks are learned from similarity-tagged documents with an ontology representing the diverse relationship among words. The learned Markov logic networks, the ontology, and the training documents are applied to the semantic document-retrieval task by inferring similarities between a query document and the training documents. Through experimental evaluation on real world question-answering data, the proposed method has been shown to outperform the simple cosine similarity-based approach in terms of retrieval accuracy.

Semantic Conceptual Relational Similarity Based Web Document Clustering for Efficient Information Retrieval Using Semantic Ontology

  • Selvalakshmi, B;Subramaniam, M;Sathiyasekar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3102-3119
    • /
    • 2021
  • In the modern rapid growing web era, the scope of web publication is about accessing the web resources. Due to the increased size of web, the search engines face many challenges, in indexing the web pages as well as producing result to the user query. Methodologies discussed in literatures towards clustering web documents suffer in producing higher clustering accuracy. Problem is mitigated using, the proposed scheme, Semantic Conceptual Relational Similarity (SCRS) based clustering algorithm which, considers the relationship of any document in two ways, to measure the similarity. One is with the number of semantic relations of any document class covered by the input document and the second is the number of conceptual relation the input document covers towards any document class. With a given data set Ds, the method estimates the SCRS measure for each document Di towards available class of documents. As a result, a class with maximum SCRS is identified and the document is indexed on the selected class. The SCRS measure is measured according to the semantic relevancy of input document towards each document of any class. Similarly, the input query has been measured for Query Relational Semantic Score (QRSS) towards each class of documents. Based on the value of QRSS measure, the document class is identified, retrieved and ranked based on the QRSS measure to produce final population. In both the way, the semantic measures are estimated based on the concepts available in semantic ontology. The proposed method had risen efficient result in indexing as well as search efficiency also has been improved.

Enhancement of CAD Model Interoperability Based on Feature Ontology

  • Lee Yoonsook;Cheon Sang-Uk;Han Sanghung
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.3
    • /
    • pp.33-42
    • /
    • 2005
  • As the networks connect the world, enterprises tend to move manufacturing activities into virtual spaces. Since different software applications use different data terminology, it becomes a problem to interoperate, interchange, and manage electronic data among heterogeneous systems. It is said that approximately one billion dollar has been being spent yearly in USA for product data exchange and interoperability. As commercial CAD systems have brought in the concept of design feature for the sake of interoperability, terminologies of design features need to be harmonized. In order to define design feature terminology for integration, knowledge about feature definitions of different CAD systems should be considered. STEP standard have attempted to solve this problem, but it defines only syntactic data representation so that semantic data integration is not possible. This paper proposes a methodology for integrating modeling features of CAD systems. We utilize the ontology concept to build a data model of design features which can be a semantic standard of feature definitions of CAD systems. Using feature ontology, we implement an integrated virtual database and a simple system which searches and edits design features in a semantic way.