• 제목/요약/키워드: semantic classification

검색결과 329건 처리시간 0.022초

Structural SVM 기반의 한국어 의미역 결정 (Korean Semantic Role Labeling Using Structured SVM)

  • 이창기;임수종;김현기
    • 정보과학회 논문지
    • /
    • 제42권2호
    • /
    • pp.220-226
    • /
    • 2015
  • 의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 문제이다. 일반적으로 의미역 결정을 위해서는 서술어 인식(Predicate Identification, PI), 서술어 분류(Predicate Classification, PC), 논항 인식(Argument Identification, AI) 논항 분류(Argument Classification, AC) 단계가 수행된다. 본 논문에서는 한국어 의미역 결정 문제를 위해 Korean Propbank를 의미역 결정 학습 말뭉치로 사용하고, 의미역 결정 문제를 Sequence Labeling 문제로 바꾸어 이 문제에서 좋은 성능을 보이는 Structural SVM을 이용하였다. 실험결과 서술어 인식/분류(Predicate Identification and Classification, PIC)에서는 97.13%(F1)의 성능을 보였고, 논항 인식/분류(Argument Identification and Classification, AIC)에서는 76.96%(F1)의 성능을 보였다.

객체 특징점 모델링을 이용한 시멘틱 단서 기반 영상 분류 (Semantic Cue based Image Classification using Object Salient Point Modeling)

  • 박상혁;변혜란
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권1호
    • /
    • pp.85-89
    • /
    • 2010
  • 대부분의 영상들은 여러 객체 영역들의 시각적인 특징과 각각의 의미들의 조합으로 구성되어 있다. 그러나 일반적으로 영상 처리를 위한 컴퓨터 시스템들은 영상을 특정 객체 영역의 의미 정보 단위로 해석하지 못하기 때문에 사람이 영상을 인지하는 것과 의미적인 차이(semantic gap)가 발생한다. 본 논문에서는 이러한 문제점을 극복하기 위하여 각 객체 영역 단위에서 추출한 고유한 특징점들을 고차원의 의미 정보로 모델링하여 영상을 분류하는 방법을 제안한다. 제안하는 방법은 객체 단위로 추출된 고유한 특징점들의 의미 정보를 특정 객체 영역을 인식하기 위한 의미 단서로 이용한다. 이를 통하여 기존의 영상 분류 방법들에 비하여 인간의 인지 능력과 유사하고 보다 효율적으로 영상을 분류할 수 있는 장점이 있다. 실험 결과는 다양한 카테고리 종류의 영상에 대하여 제안하는 방법의 효과적인 분류 성능을 보여준다.

The Basic Concepts Classification as a Bottom-Up Strategy for the Semantic Web

  • Szostak, Rick
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제4권1호
    • /
    • pp.39-51
    • /
    • 2014
  • The paper proposes that the Basic Concepts Classification (BCC) could serve as the controlled vocabulary for the Semantic Web. The BCC uses a synthetic approach among classes of things, relators, and properties. These are precisely the sort of concepts required by RDF triples. The BCC also addresses some of the syntactic needs of the Semantic Web. Others could be added to the BCC in a bottom-up process that carefully evaluates the costs, benefits, and best format for each rule considered.

영상수준과 픽셀수준 분류를 결합한 영상 의미분할 (Semantic Image Segmentation Combining Image-level and Pixel-level Classification)

  • 김선국;이칠우
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1425-1430
    • /
    • 2018
  • In this paper, we propose a CNN based deep learning algorithm for semantic segmentation of images. In order to improve the accuracy of semantic segmentation, we combined pixel level object classification and image level object classification. The image level object classification is used to accurately detect the characteristics of an image, and the pixel level object classification is used to indicate which object area is included in each pixel. The proposed network structure consists of three parts in total. A part for extracting the features of the image, a part for outputting the final result in the resolution size of the original image, and a part for performing the image level object classification. Loss functions exist for image level and pixel level classification, respectively. Image-level object classification uses KL-Divergence and pixel level object classification uses cross-entropy. In addition, it combines the layer of the resolution of the network extracting the features and the network of the resolution to secure the position information of the lost feature and the information of the boundary of the object due to the pooling operation.

전자정부내 의미기반 기술 도입에 따른 기능 및 정책 연구 (Research on Function and Policy for e-Government System using Semantic Technology)

  • 고광섭;장영철;이창훈
    • 한국디지털정책학회:학술대회논문집
    • /
    • 한국디지털정책학회 2007년도 춘계학술대회
    • /
    • pp.79-87
    • /
    • 2007
  • This paper aims to offer a solution based on semantic document classification to improve e-Government utilization and efficiency for people using their own information retrieval system and linguistic expression Generally, semantic document classification method is an approach that classifies documents based on the diverse relationships between keywords in a document without fully describing hierarchial concepts between keywords. Our approach considers the deep meanings within the context of the document and radically enhances the information retrieval performance. Concept Weight Document Classification(CoWDC) method, which goes beyond using exist ing keyword and simple thesaurus/ontology methods by fully considering the concept hierarchy of various concepts is proposed, experimented, and evaluated. With the recognition that in order to verify the superiority of the semantic retrieval technology through test results of the CoWDC and efficiently integrate it into the e-Government, creation of a thesaurus, management of the operating system, expansion of the knowledge base and improvements in search service and accuracy at the national level were needed.

  • PDF

논항 정보 기반 "요리 동사"의 어휘의미망 구축 방안 (The Construction of Semantic Networks for Korean "Cooking Verb" Based on the Argument Information.)

  • 이숙의
    • 한국어학
    • /
    • 제48권
    • /
    • pp.223-268
    • /
    • 2010
  • The purpose of this paper is to build a semantic networks of the 'cooking class' verb (based on 'CoreNet' of KAIST). This proceedings needs to adjust the concept classification. Then sub-categories of [Cooking] and [Foodstuff] hierarchy of CoreNet was adjusted for the construction of verb semantic networks. For the building a semantic networks, each meaning of 'Cooking verbs' of Korean has to be analyzed. This paper focused on the Korean 'heating' verbs and 'non-heating'verbs. Case frame structure and argument information were inserted for the describing verb information. This paper use a Propege 3.3 as a tool for building "cooking verb" semantic networks. Each verb and noun was inserted into it's class, and connected by property relation marker 'HasThemeAs', 'IsMaterialOf'.

구문의미 분석을 활용한 복합 문단구분 시스템에 대한 연구 (Research on the Hybrid Paragraph Detection System Using Syntactic-Semantic Analysis)

  • 강원석
    • 한국멀티미디어학회논문지
    • /
    • 제24권1호
    • /
    • pp.106-116
    • /
    • 2021
  • To increase the quality of the system in the subjective-type question grading and document classification, we need the paragraph detection. But it is not easy because it is accompanied by semantic analysis. Many researches on the paragraph detection solve the detection problem using the word based clustering method. However, the word based method can not use the order and dependency relation between words. This paper suggests the paragraph detection system using syntactic-semantic relation between words with the Korean syntactic-semantic analysis. This system is the hybrid system of word based, concept based, and syntactic-semantic tree based detection. The experiment result of the system shows it has the better result than the word based system. This system will be utilized in Korean subjective question grading and document classification.

클라우드 환경에서 문서의 유형 분류를 위한 시맨틱 클러스터링 모델 (Semantic Clustering Model for Analytical Classification of Documents in Cloud Environment)

  • 김영수;이병엽
    • 한국콘텐츠학회논문지
    • /
    • 제17권11호
    • /
    • pp.389-397
    • /
    • 2017
  • 최근 시맨틱 웹 문서는 클라우드 기반으로 생성 및 유통되고 문서유형 분류에 따른 쉽고 신속한 정보 검색을 위해 지능형 시맨틱 에이전트를 요구하고 있다. 기존의 웹 문서의 검색은 키워드를 이용하여 해당하는 질의어가 포함된 문서 목록을 결과로 가져오며 사용자의 요구시에 내용을 제시하는 것이 일반적인 형태이다. 이는 웹 문서의 유사도와 시맨틱 관련성을 고려하지 않음으로써 사용자가 내용 검색과 분석에 많은 시간과 노력을 요구한다. 이의 해결을 위해서 빅 데이터 요소 기술인 하둡과 NoSQL을 활용하여 시맨틱 웹 문서에 포함된 키워드 빈도에 기반한 웹 문서의 유형 분류와 유사도를 제시하는 시맨틱 클러스터링 모델을 제안한다. 제안 모델은 실시간 데이터 처리가 요청되는 이종 모델을 가진 공공 데이터와 웹 데이터를 취합하여 일반 사용자가 쉽게 질의할 수 있는 대용량 지식 기반 시스템을 구축하는데 응용 모델로 활용될 수 있다.

소아약증직결(小兒藥證直訣)과 비위론(脾胃論)에 기재된 용어 비교에 관한 연구 (The Comparative Study of the Nominal Terms between "Biwiron(脾胃論)" and "Soayakjeungjikgyeol(小兒藥證直訣)")

  • 김민건;이병욱;김은하
    • 대한한의학원전학회지
    • /
    • 제23권1호
    • /
    • pp.59-79
    • /
    • 2010
  • Objective : We did a comparative study about characteristics of oriental medical books. As a result, we took notice of classification in the nominal terms by semantic type of UMLS(Unified Medical Language System). By using classified nominal terms, comparative study can be more effectively. So, we selected another oriental medical book and classified nominal terms in it by semantic type of UMLS. By result of classification, we have attempted to study about comparison between oriental medical books and development of medical theories. Method :We have made a comparative study on classification in the nominal terms between "Biwiron(脾胃論)" and "Soayakjeungjikgyeol(小兒藥證直訣)" according to the below the procedure. (1) Making a nominal terms list of "Soayakjeungjikgyeol(小兒藥證直訣)" and grasping contextual meaning of nominal terms of it. (2) Modification and supplementation about semantic type of UMLS for "Soayakjeungjikgyeol(小兒藥證直訣)". Using the modified classification system, we classified nominal terms. After this process, we arranged classified nominal terms by Haansoft Hangul 2007. (3) Comparing classified nominal terms between "Biwiron(脾胃論)" and "Soayakjeungjikgyeol(小兒藥證直訣)". Result : In the "Soayakjeungjikgyeol(小兒藥證直訣)", there are more than 2,519's nominal terms and different categories of semantic type of UMLS classification from "Biwiron(脾胃論)". Through comparison between their classification of nominal terms, we can understand the characteristics of the two and their development of medical theories.

분류체계 일치를 통한 과학기술정보 상호 교환 방법에 관한 기초 연구 (A Preliminary Study on Interchange of Science and Technology Information through Harmonization of Classification Schemes)

  • 홍성화;서태설
    • 정보관리연구
    • /
    • 제35권3호
    • /
    • pp.109-123
    • /
    • 2004
  • 과학기술정보의 의미적 상호운용성 문제는 빈번하게 발생한다. 잘 만들어진 분류체계는 상이한 데이터베이스 간에 의미상 불일치 없이 정보를 교환하기 위한 도구로 사용될 것이다. 하지만 각 데이터베이스가 취하고 있는 분류체계가 상이함으로 인해서 여전히 현실적인 장벽이 존재한다. 따라서 분류체계간의 일치 및 조화는 매우 시급한 문제이다. 본 논문의 목표는 다른 분류체계('국가과학기술표준분류'와 'KISTI 표준 분류')를 갖는 데이터베이스간의 정보 교환 시에 발생할 수 있는 의미적 불일치를 해결하는 것이다. 이를 위해서 과학기술의 개념적 체계 분석을 수행하였고 다섯가지의 일치/불일치 유형을 사례에 기반하여 분석하였다.