• Title/Summary/Keyword: self-adaptive method

Search Result 188, Processing Time 0.024 seconds

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

High Speed Self-Adaptive Algorithms for Implementation in a 3-D Vision Sensor (3-D 비젼센서를 위한 고속 자동선택 알고리즘)

  • Miche, Pierre;Bensrhair, Abdelaziz;Lee, Sang-Goog
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.123-130
    • /
    • 1997
  • In this paper, we present an original stereo vision system which comprises two process: 1. An image segmentation algorithm based on new concept called declivity and using automatic thresholds. 2. A new stereo matching algorithm based on an optimal path search. This path is obtained by dynamic programming method which uses the threshold values calculated during the segmentation process. At present, a complete depth map of indoor scene only needs about 3 s on a Sun workstation IPX, and this time will be reduced to a few tenth of second on a specialised architecture based on several DSPs which is currently under consideration.

  • PDF

A Self-selection of Adaptive Feature using DCT

  • Lim, Seung-in
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.3
    • /
    • pp.215-219
    • /
    • 2000
  • The purpose of this paper is to propose a method to maximize the efficiency of a content-based image retrieval for various kinds of images. This paper discuss the self-adaptivity for the change of image domain and the self-selection of optimal features for query image, and present the efficient method to maximize content-based retrieval for various kinds of images. In this method, a content-based retrieval system is adopted to select automatically distinctive feature patterns which have a maximum efficiency of image retrieval in various kinds of images. Experimental results show that the Proposed method is improved 3% than the method using individual features.

  • PDF

A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection

  • Pan, Chu-Dong;Yu, Ling;Chen, Ze-Peng;Luo, Wen-Feng;Liu, Huan-Lin
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.957-980
    • /
    • 2016
  • Structural damage detection (SDD) is a challenging task in the field of structural health monitoring (SHM). As an exploring attempt to the SDD problem, a hybrid self-adaptive Firefly-Nelder-Mead (SA-FNM) algorithm is proposed for the SDD problem in this study. First of all, the basic principle of firefly algorithm (FA) is introduced. The Nelder-Mead (NM) algorithm is incorporated into FA for improving the local searching ability. A new strategy for exchanging the information in the firefly group is introduced into the SA-FNM for reducing the computation cost. A random walk strategy for the best firefly and a self-adaptive control strategy of three key parameters, such as light absorption, randomization parameter and critical distance, are proposed for preferably balancing the exploitation and exploration ability of the SA-FNM. The computing performance of the SA-FNM is evaluated and compared with the basic FA by three benchmark functions. Secondly, the SDD problem is mathematically converted into a constrained optimization problem, which is then hopefully solved by the SA-FNM algorithm. A multi-step method is proposed for finding the minimum fitness with a big probability. In order to assess the accuracy and the feasibility of the proposed method, a two-storey rigid frame structure without considering the finite element model (FEM) error and a steel beam with considering the model error are taken examples for numerical simulations. Finally, a series of experimental studies on damage detection of a steel beam with four damage patterns are performed in laboratory. The illustrated results show that the proposed method can accurately identify the structural damage. Some valuable conclusions are made and related issues are discussed as well.

Adaptive Backstepping Control Using Self Recurrent Wavelet Neural Network for Stable Walking of the Biped Robots (이족 로봇의 안정한 걸음새를 위한 자기 회귀 웨이블릿 신경 회로망을 이용한 적응 백스테핑 제어)

  • Yoo Sung-Jin;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.233-240
    • /
    • 2006
  • This paper presents the robust control method using a self recurrent wavelet neural network (SRWNN) via adaptive backstepping design technique for stable walking of biped robots with unknown model uncertainties. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the biped robots. The adaptation laws for weights of the SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Computer simulations of a five-link biped robot with unknown model uncertainties verify the validity of the proposed control system.

Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle (수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어)

  • Seo, Kyoung-Cheol;Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.

Adaptive PID controller based on error self-recurrent neural networks (오차 자기순환 신경회로망에 기초한 적응 PID제어기)

  • Lee, Chang-Goo;Shin, Dong-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.209-214
    • /
    • 1998
  • In this paper, we are dealing with the problem of controlling unknown nonlinear dynamical system by using neural networks. A novel error self-recurrent(ESR) neural model is presented to perform black-box identification. Through the various outcome of the experiment, a new neural network is seen to be considerably faster than the BP algorithm and has advantages of being less affected by poor initial weights and learning rate. These characteristics make it flexible to design the controller in real-time based on neural networks model. In addition, we design an adaptive PID controller that Keyser suggested by using ESR neural networks, and present a method on the implementation of adaptive controller based on neural network for practical applications. We obtained good results in the case of robot manipulator experiment.

  • PDF

A Study on the Design of Excitation Controller using Self Tuning Adaptive Control (자기동조 적응제어를 이용한 여자제어기 설계에 관한 연구)

  • Yoo, Hyun-Ho;Lee, Sang-Keun;Kim, Joon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.375-378
    • /
    • 1991
  • This paper presents a design method of synchronous generator excitation controller using self-tuning PID algorithm. Controller parameter is determined by using adaptive control theory in order to maintain optimal operation of generator under the various operating conditions. To determine the optimal parameter of controller. minimum variance algorithm using the recursive leastsquare(RLS) indentification method is adopted and the difference between the speed deviation with weighted factor and voltage deviation is used as the input signal of adaptive controller, which provides good damping and conversion characteristics. The results tested on a single machine infinite bus system verify that the proposed controller has better dynamic performances than conventional controller.

  • PDF

Design of a Geometric Adaptive Straightness Controller for Shaft Straightening Process (축교정을 위한 기하학적 진직도 적응제어기 설계)

  • Kim, Seung-Cheol;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2451-2460
    • /
    • 2000
  • In order to minimize straightness error of deflected shaft, a geometric adaptive straightness controller system is studied. A multi-step straightening and a three-point bending process have been developed for the geometric adaptive straightness controller. Load-deflection relationship, on-line identification of variations of material properties, on-line springback prediction, and real-time hydraulic control methodology are studied for the three-point bending process. By deflection pattern analysis and fuzzy self-learning method in the multi-step straightening process, a straightening point and direction, desired permanent deflection and supporting condition are determined. An automatic straightening machine has been fabricated for rack bars by using the developed ideas. Validity of the proposed system is verified through experiments.

Goal-based Evaluation of Contextual Situations for Self-adaptive Software (자기적응형 소프트웨어를 위한 목표 기반의 외부상황 평가 기법)

  • Kim Jae-Sun;Park Soo-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.3
    • /
    • pp.316-334
    • /
    • 2006
  • In the traditional computing paradigm, developers design software to run in a fixed and well-defined environment. The real environment, however, is too complicated to analyze all situations perfectly. Consequently, traditional software, which is implemented only for what is wanted as input, often fails badly in real environment. As a new approach, self-adaptive software can avoid runtime failures adapting to unpredictable situations. Self-adaptive software must firstly evaluate the contextual situation to determine the need for adaptation. Existing researches do not support the abstraction mechanism for identifying contextual problem. Consequently, they can have troubles with identifying the contextual problem as the execution environment is getting complex. In addition, they cannot support the expandability for contextual problems, which software can evaluate. This paper suggests the goal-based evaluation method of contextual situation for coping with the limitations of existing researches.