Journal of Control, Automation and Systems Engineering Vol. 12, No. 3, March 2006 233

olF ol obMet ZIME SIs Al 5 HolEs MY
522 0|88 M3 WAHT Hof

Adaptive Backstepping Control Using Self Recurrent Wavelet Neural
Network for Stable Walking of the Biped Robots ‘

F M A, 9 A
(Sung Jin Yoo and Jin Bae Park)

Abstract : This paper presents the robust control method using a self recurrent wavelet neural network (SRWNN) via adaptive
backstepping design technique for stable walking of biped robots with unknown model uncertainties. The SRWNN, which has
the properties such as fast convergence and simple structure, is used as the uncertainty observer of the biped robots. The
adaptation laws for weights of the SRWNN and reconstruction error compensator are induced from the Lyapunov stability
theorem, which are used for on-line controlling biped robots. Computer simulations of a five-link biped robot with unknown
model uncertainties verify the validity of the proposed control system.
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L Introduction

The biped robot control has been received increased
attention due to their human-like mobility moving on steep
stairs, obstructed environments. This mobility enables the
biped robots to perform the dangerous works instead of
humans. Thus, the stable walking control of the biped
robots is a fundamentally hot issue and has been studied by
many researchers[1-3]. However, the inherent instability
caused by two legged locomotion makes difficult control
the biped robots. Besides, uniike the robot manipulator, the
biped robot has an uncontrollable degree of freedom in the
biped robot dynamics playing a dominant role in the
stability of their locomotion. In recent year, various control
techniques such as computed torque control[l], sliding
model control[2], active force control[3] are used for
controlling the biped robot. Especially, [1] has contributed
for the dynamic modeling and robust control of the
five-link biped robot. However, these works have a problem
that the bounds of the uncertainties and disturbances must
be known for the design of the control law. Actually, in
real applications, the parameter variations of the system are
difficult to predict, and the external disturbances changed
according to the environment are also difficult to know.

The adaptive backstepping control is a systematic and
recursive design methodology for nonlinear feedback control.
Unlike the feedback linearization method having the

* 39} 2 ZH Corresponding  Author)

=R 0 2005, 7. 4,  XHERA - 2005, 12. 25.

97, v : AAg)stE 7] 4% 3

(niceguy 1201 @control.yonsei.ac.kr/jbpark@yonsei.ac.kr)

¥ o] EEL 20049k XSt TATE] Aol st A
5 2 2{KRF-2004-041-D00261).

problems such as the precise model and the cancellation of
useful nonlinear terms, the adaptive backstepping design
offers a choice of design tools for accommodation of
uncertainties and nonlinearities, and can avoid wasteful
cancellations[4,5]. The key idea of the adaptive backstepping
design is to select recursively some appropriate state
variables as virtual inputs for lower dimension subsystems
of the overall system and the Lyapunov functions are
designed for each stable virtual controller[4]. Therefore, the
finally designed adaptive backstepping control law can
guarantee the stability of total control system.

On the other hand, self recurrent wavelet neural network
(SRWNN)[6,7] was proposed to compensate the disadvantage
of a wavelet neural network (WNN)[8] such as the static
mapping. In this paper, the adaptive backstepping control
method using the SRWNN having the powerful dynamic
mapping ability and simple structure are proposed for stable
walking of biped robots. In our control system, the SRWNN
is employed as the uncertainty observer in the adaptive
backstepping controller and the error compensator is also
used to reduce the approximation error of SRWNN. The
adaptation laws for weights of the uncertainty observer and
the error compensator are induced from the Lyapunov
stability theorem, which are used to guarantee the
asymptotic stability. Finally, the simulation results for the
five-link biped robot are provided to demonstrate the
effectiveness of the proposed control scheme.

IL Preliminaries
1. The biped robot model with uncertainties
The motion of biped robots are achieved via various
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phased movements such as the single leg support phase, the
double leg support phase, and the biped in the air
phase[1-3]. In this paper, the biped dynamic model is
simplified by only considering the single support phase. The
dynamics of the biped robot with model uncertainties in
single support phase can be expressed in the following

Lagrange form[10]:

Mq)g+ Clg,q)+ Gla)+ F(g)+ E(g,q,7) =7 (1)

where

=g, ¢,7) = MM (r— 7~ -Gl -F(9)}
+ - (q,-q)*G(q)*F(q')}

denotes the uncertainty of the robot system, and
M(q) € R"™" is the inertia matrix, Clg,q) € R* denotes
the Coriolis and centrifugal torques, G(g) € R" is the
gravity vector, F{¢) € R" represents the friction term, and
the control input torque is TE€ R". Also, M(q), Clqq),
G(g), and F(¢) are the actual values with uncertainties in
the nominal values M(q), Clq,9), G(q), and F(g),
respectively. 7; is the external disturbance. In this paper, it
is assumed that the nominal values are only known values
for a given robot system. That is, suppose that the actual
values M(q), Clqq),

disturbance 7; are the unknown values. Accordingly, the

G(q), and F(¢) and the external

uncertainty term =(g,¢,7) cannot be computed.
2. SRMN structure

A schematic diagram of the SRWNN structure shown in
Fig. 1 has A inputs, one output, and N, XN, mother
wavelets[6,7]. The SRWNN structure consists of four layers:
an input layer, a mother wavelet layer, a product layer, and
an output layer. Each node of a mother wavelet layer has a
mother wavelet and a self-feedback loop. In this paper, we
select the first derivative of a Gaussian function,

$(z) =— zexp(— %xz) which has the universal approximation
property[8] as a mother wavelet function. The nodes in a

product layer are given by the product of the mother

wavelets as follows:

N
&(@) = Tg(ep), whit = 2t ()
k=1 ik

where, m; and d; are the translation factor and the
dilation factor of the wavelets, respectively. The subscript
jk indicates the k-th input term of the j-th wavelet. In
addition, the inputs u; of the wavelet nodes can be

denoted by

U = Tp+ Pz e O, 3)

MO - IS8 - NS =2X M 12 d, W 3 &

S 2006. 3

Layer 1 Layer 2 Layer3 Layer 4

Fig. 1. SRWNN structure.

where, 8; denotes the weight of the self-feedback loop, and
z7' is a time delay. The input of mother wavelet layer
contains the.memory term ¢z !, which can store the past
information of the network. That is, the current dynamics
of the system is conserved for the next sample step. Here,
6, is a factor to represent the rate of information storage.
The SRWNN output is a linear combination of consequences
obtained from the output of the product layer. In addition,
the output node accepts directly input values from the input
layer. Therefore, the SRWNN output y is composed of

self-recurrent wavelets and parameters as follows:

)+ Z ayTy, @

where, w; is the connection weight between product nodes
and output nodes, and a; is the connection weight between
the input nodes and the output node.

In this paper, five weights a;, my, dy, 85, and w; of the
SRWNN are trained by the adaptation laws induced from
the Lyapunov stability in the following section. To this end,
we define the weighting vector as

A=lay e ay My My Ty My ey
dyy - dyy dyedyy e dy gy 010 Oy
T
Oy Oy o Oy Wy - wy ]

where A € ROMNHN4N)x1

III. Adaptive Backstepping Control System using SRWNN
The dynamics (1) is rewritten by using state variables

X,=q and X, = ¢ as follows:



Journal of Control, Automation and Systems Engineering Vol. 12, No. 3, March 2006 235

Xl =X
Xy= M (X){r— C(X, X,) - G(X;) ®)
—F(X) - E(X, X, 7))}

The control objective is to design an adaptive
backstepping control system based on SRWNN for the state
vector X, to track the reference trajectory vector g,. Here,

it is assumed that ¢, ¢, and d‘d are the bounded functions

of the time. We now design the adaptive controller using
SRWNN via backstepping design technique{4] shown in
Fig. 2 step by step.

Step 1: Design the virtual controller X,

For the tracking control of the state X;, define the

tracking error as
Z(t) =X (t) —qq(t), ©
and its derivative is
Z () =X,(t)—q,(t) =v (t) —q,(t), ™

where v (t) = X,(t) is called the virtual control. Then,

the stabilizing function s (¢} is defined as
s (t) == K2 (t) +q,(t), ®)

when K is a positive definite diagonal matrix.

The first Lyapunov function V¥ (¢) is chosen as

Vi) = 1474 ©)

Then, its derivative is

V(t) :Z1TZ.1
=Z7 (X, (t)—q.(t)) (10)
=7 (v (t)—s (t) - KZ(t)).

Here, if the wvirtual control v (¢) is chosen as the
stabilizing function s (), the Lyapunov stability condition
V,(t) <0 is satisfied. Thus, the asymptotic convergence of
the position tracking error Z (¢) can be guaranteed.

Step 2: Design the actual controller 7 using SRWNN.
To design the actual controller 7, we define Z, as

Zy=v(t)—s (t). And then, its derivative of the % is

expressed as

Zy=v (t)—s (t)
=X, (t)+ K Z,(t) —q,(t)
=M (X)) {r-CX,. %) - G(X,)
—F(X)} + (X, X, 7) + K Z, (8) —q 4(t),

an

where, (X ,, X, 1)=—-M (X )E(X,,X,,1) is
the uncertainty term, 7 is a function of X;, X,, and
@Q,=(qud4,q,) which denotes the reference position,
velocity, and acceleration. Accordingly, the uncertainty term
can be represented as (X}, X, 7) = I'(X, Xy, Q).

To design the backstepping control system, the Lyapunov

function is defined as

Vo2, (t), 2 (¢)) = Vﬁ-%ZQTZz (12)

And its derivativé can be derived as follows:
V,=V,+%'2,
=Z" (%~ K4 {t)+ 4 M (X)
{r—c(Xx, %) - G(X) —F(X)}
+(X, X, Q) + K Z1(2) —d,(t)]

(13)

From (13), if the backstepping control law 7 is designed as

T= C(X11X2)+ G(X1)+F(Xz) +M(X1)
[~ I(X, X, Q) — K Z, (t) +q,(t) — K2 (¢) (14)
- Z (t)],

where K, is a positive definite diagonal matrix, from (13),
the backstepping control system is the asymptotic stable.

However, since the uncertainty term I'(X;, X, Q;) is the
unknown value, 7 cannot be evaluated. According to the
powerful approximation ability[6], we employ the SRWNN
to observe the nonlinear uncertainty term I'( X}, X5, @) to
a sufficient degree of accuracy. The inputs of the SRWNN
are the states X, and X,, and its output is I'. Thus the
uncertainty term I'(X;, X5, @;) can be described by the
optimal SRWNN plus a reconstruction error vector €, as

follows:

IX)=I"(XI4") +¢

P -~ * * ~ = (15)
=I'(XA)+ I (X147) = I'(X14 )] +e,,
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Fig. 2. Block diagram of'the proposed control systern.
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where X= (X, X,), A =diagA , A, .., A,]; A, e
ROMHNMANMANIXI(1 =1 2 n) is the estimated vector of
weighting vector A of the SRWNN defined in Section 2.2,
and 4" is the optimal weighting matrix that achieves the
Then,
series expansion of I" (X]A") around 4 and substituting it
into (15), (15) can be represented by[9]

minimum reconstruction error. taking the Taylor

MNX)=r(x14") +¢
P (x14) +A~T[ﬂ¥—l]+a,

84

(16)

where A(t)=A"—~A(t), and o (t,X) = H(A,A) +e¢,.

Here, H(A",A) is a high-order term.
Assumption 1 [13]: It is assumed that the reconstruction
error term plus high-order term is bounded as

lle (¢, X)lI< 8, = 674, (¢, X) an

where 6, € R* is an unknown vector and A,(t, X) =

(L (15 O IX: (t)”]T is a chosen regressor vector.

From the boundedness of a(t,X), it can be easily
shown that Assumption 1 is reasonable. The reconstruction
error term ¢; is bounded by a positive function since it
can be reduced by increasing the number of the hidden
nodes of the SRWNN. Also, a high-order term H is
bounded by a positive constant[9]. Since the weights of the
SRWNN are trained by the adaptation law induced from
Theorem 1, A—->A" as t—> oo, Thus, it is resonable
that the size of the high order terms is bounded by the
positive constant. Therefore, based on the boundedness of a
high-order term H and The reconstruction error term ¢,

the « is a function of X and bounded. Accordingly, the
regressor vector can be chosen as the above equation.

Then, we propose the adaptive backstepping control law
using SRWNN as follows:

T= C(Xl:Xz)+G(X1)+F(X2)+M(X1)[_ﬁ(Xlg)

e L) . ) (18)
Ao K2, (8) +q4(t) - K5(1) = 2 ()],

Theorem 1: Assume that the robotic system (1) with
unknown model uncertainties is controlled by the SRWNN
based backstepping control law (18). Then if the tuning

parameters of the SRWNN and the error compensator Su

are trained by the following adaptation rules:

A\l—)\lzl:api()fi'Al):lZ?z(t) (19)
84,
b, =12 ()Pt (£, X) 20)

MO - Xis3t - AIAEZSE =2X M 12 &, X 3 & 20086. 3

where i=1,...,n, A =diag [\, Ao, s Ay nls Ay €
ROMNTNANIXT and Xy = diag [Xy, ), Ay o, Ay 5] are positive

stability of the
SRWNN based backstepping system can be guaranteed.

tuning gain matrices, The asymptotic

Proof: A Lynapunov candidate is chosen as

v, = VH%tr(ET/\;lj)jL%?uT/\;léw )

where 0,(t)=0,(t)—0,, and tr(- ) denotes the trace

of a matrix. Here, 9u is the estimated parameters of J,,

which is used to compensate the observed error induced by
the SRWNN uncertainty observer.

Differentiating the Lyapunov function (21) and using (16)
and (18), we obtain

Vo= V,—tr (AN 1A )+ G706,
=— 7" (t) K, 2, (t) ~ 2 (t) K, 2 (t)

+zf<¢>ﬂ[£%ﬂﬂ]+ & (a6 |5 0]
a
—tr (ATAT'A ) +072% .
By applying (17), we obtain
Vo< —ZT (1)K, 2, (t) — 2, () K, 2 (t)
—trdAT[A71A _[_J_Lal" A4 ]ZZT(t)}
0 A
where &, =8,—6, and 6, =6 7A,. Thus,
Vo< — 27 () K2 (t) — Z7 (¢) Ky 2, (t)
—tr{AT[A1A —[—A—H A4 ]ZZT(L‘) }
Y
-0 (A% ()]|- 238 ).

Then, if the adaptation laws (19) and (20) are applied to
the above equation, we can obtain

V< — 20 (1)K, 2 (t) — 2 (t) K, 2 (t)

<—02(t)<0.
By using Barbalat's Lemma[5], lim £2(¢)=0. That is,
t—o00
Z(t) and Z(t) will converge to zero as {00,

Therefore, the asymptotic stability of our control system is

satisfied.

IV. Simulation
In this simulation, we consider the five-link biped robot
shown in Fig. 3. The relative angle of the five-link biped
robot is ¢=[gy ¢ @ G ¢i]. Only four of this five
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Table 1. Simulation parameters for the five-link biped robot.

m; 11 m di; {m T .
Nominal (Kg)Actual Nonginzll Non’fine)ll 7:(Kg m) (Moment of inertia)
LINK 1 (Right Leg) 223 471 0.332 0.189 0.033
LINK 2 (Right Thigh) 5.28 6.82 xcos(t) 0.302 0.236 0.033
LINK 3 (Torso) 14.79 20.35 0.486 0.282 0.033
LINK 4 (Left Thigh) 5.28 6.73 xsin(t) 0.302 0.236 0.033
LINK 5 (Left Leg) 2.23 7.84 0.332 0.189 0.033

relative degrees can be controlled directly by the four
driving torques at each joints. The angle ¢, at the contact

point with the walking surface is controlled indirectly using
the gravitational effects. This aspect is the most important
characteristics of the locomotion of the biped robot.
Accordingly, each of two hip and two keen joints are
assumed to be driven only by an independent motor. The
motion of the biped robot is assumed to be constrained
within the sagittal plane. The biped robot is planned to
start walking from the vertical position and walk steadily
for several steps on a flat horizontal surface. Actually, the
complete motion of the biped robot can be explained by a
single support phase, a double support phase, double
impact, switching and transformation[11]. Thus, there is a
need to switch the dynamic equations and controllers during
the iterative computation of the simulation program.
However, this method causes the complex programming
problems[2]. Accordingly, in this subsection, we apply our
control system for stable walking control of the planar
five-link biped robot with only a single support phase. The
dynamic model and the reference trajectory planned
considering only the single support phase proposed in [1,2]
are used in this simulation. And to examine the robustness
of the proposed control method, we compare the SRWNN
based adaptive backstepping control (SRWNNABC) method
with the computed torque control (CTC) method.

|4

Fig. 3. Five-link biped robot in the sagittal plane.
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Since g of the biped robot model is the uncontrollable

joint (i. e, 7,=0), our control law is redefined as follows:
T=MX)U+CX, %)+ G(X)+F(X)

where U € R® is the vector with components

1 [
S v [IZ(]V[11+1 cuy )+ G+ G+ F1:|
u L=

5 Sa(t)
N2

_Kl,lZI,l(t) + dd,l(t) — K,y ,2,,(t)— 2, ,(t)

Upyq :_rl(Xll Al)

Here, M p (P=1,2,,5) denote the components of the
first row of matrix M(X,) and C,, G|, and F | are
the first element of the vectors C(X,X,), (X,), and
F(X ), respectively. And to compare the performance of
SRWNNABC system and CTC system, we use the error
cost function defined as Cost,= Z, (¢)?, and it is assumed
that the same disturbances and uncertainties influence the
biped robot system. The initial positions are set to
¢:(0) = ¢,(0)= ¢;(0)= ¢,(0)=0 and the link masses 2,
s of the biped robot are assumed to be uncertain.
Especially, it is assumed that g and s have the
time-varying uncertainties and g has about 3009/
uncertainty of the nominal value. The parameters of the
five-link biped robot are shown in Table 1. In addition, the
external disturbances given by 7,= [0.4sin (10¢) 0.3cos
(10¢) 0.7sin(10¢) 0.6sin (10¢) 0.3cos {10¢)]T are in-
jected into the biped robot. The parameters of the
SRWNNABC system for controlling the states from ¢ to

g, are chosen as

K, = diag[200 200 400 300]
K, = diag[100 100 150 150]
A = diag[0.01 0.01 0.01 0.01]
A, = diag[0.001 0.001 0.001].

and the parameters of the CTC system are given by

Kp = diag[1000 1000 1000 1000]
K, = diag[500 500 500 500]

where K and K, are the proportional and derivative gain
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Table 2. Comparison of the average tracking errors.

e (rad) | e,(rad) | ej(rad) | e (rad)
SRWNNABC 0.0019 0.0021 0.0022 0.0018
CTC 0.0161 0.0181 0.0417 0.0322

1

g, andr,

‘o 0.2 0.4 0.6 08 1 1.2 1.4 1.6 1.8 2

@

0.4

03 -

o2t [/

S
J

0.2

il V)
\

9 and ¥,

-0.4

-0.5 L L
g 0.2 04 06 0.8 1 1.2 14 1.6 1.8 2

Time(sec)

(b)

L
Py
5
o
L Gt T L . L A
o 0.2 04 0.6 08 1 1.2 1.4 1.6 18 2
Time(sec)
©

o8

0.7

0.6

os|
5
=
s
5

. . . L ) s L
o 02 04 06 08 1 12 14 16 18 2
Time(sec)

(d)

Fig. 4. Comparison of tracking results for five-link biped robot (a)
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value, dotted line: SRWNNABC, dash-dotted line: CTC).
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diagonal matrices, respectively.

In the proposed control system, each SRWNN consists of
the very simple structure: two inputs, two mother wavelet,
one product node, and one output. The initial values of
weights of the SRWNNs are chosen randomly in the range
of [—1 1], but d;>0. And also, the initial values of

© , are given by (. That is, there are no feedback units
initially. The inaccurate initial tuning parameters of the
SRWNNs are trained optimally by online parameter tuning
methodology. Fig. 4 compares the actual joint angles of the
SRWNNABC and the CTC system. The tracking error cost
functions are compared in Figs. 5 and 6. These figures
reveal that the proposed control system gives the excellent
performance compared to the CTC system even under the
influence of the time-varying uncertainties and external
disturbances. The average tracking errors e, e, es, and
eqof g1, g4 g3 and g, are compared in Table 2.

In Table 2, note that the average tracking errors of the
CTC is more than ten times of the corresponding errors of
the SRWNNABC. Fig. 7 displays the driving torques of the
biped robot system with the SRWNNABC. The reference
locomotion mode and locomotion mode controlled by the
SRWNNABC of the biped robot on the horizontal surface

3
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1.2 : T . T : T T T T
1 1
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g'" 06} 4
o
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0 J | .
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Time{sec)

Fig. 5. Error cost function of SRWNNABC.
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Fig. 9. Controlled locomotion mode of the five-link biped robot
with the SRWNNABC.

are shown in Figs. 8 and 9. Note that two locomotion
modes have almost similar forms. As a result, the suggested
method can overcome unknown model uncertainties resulting
from the biped robot dynamics and external disturbances.

V. Conclusion
In this paper, we have proposed the SRWNNABC
system for stable walking of the biped robots with
unknown model uncertainties. The SRWNNs composed of

simple structures have been employed as the uncertainty

observer and the error compensator has been used to

compensate the observed error induced by the SRWNN

uncertainty observer. The adaptation laws for weights of the

SRWNN and the error compensator have been induced

from the Lyapunov stability theorem, which have been used

for

guaranteeing  the  asymptotic  stability of the

SRWNNABC system. Finally, the five-link biped robot has
been simulated for verifying the robustness and disturbance

rejection ability of the proposed control system.
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