• Title/Summary/Keyword: self organizing neural network

Search Result 222, Processing Time 0.032 seconds

A Comparative Study on Neural Network Algorithms for Partial Discharge Pattern Recognition (부분방전 패턴인식기법으로서의 Neural Network 알고리즘 비교 분석)

  • Lee, Ho-Keun;Kim, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.109-112
    • /
    • 2004
  • In this study, the applicability of SOM(Self Organizing Map) algorithm to partial discharge pattern recognition have been investigated. For the purpose, using acquired data from the artificial defects in GIS, SOM algorithm which has some advantages such as data accumulation ability and the degradation trend trace ability was compared with conventionally used BP(Back Propagation) algorithm. As a result, basically BP algorithm was found out to be better than SOM algorithm. Therefore, it is needed to apply SOM algorithm in combination with BP algorithm in order to improve on-site applicability using the advantages of SOM. Also, for the pattern recognition by use of PRPDA(Phase Resolved Partial Discharge Analysis) it is required the normalization of the PRPDA graph. However, in case of the normalization both BP and SOM algorithm have shown worse results, so that it is required further study to solve the problem.

  • PDF

A Study on Building B2B EC Business Model for The Shipping Industry Using Expert System

  • Yu Song-Jin
    • Journal of Navigation and Port Research
    • /
    • v.29 no.4
    • /
    • pp.349-355
    • /
    • 2005
  • The use of the internet to facilitate commerce among companies promises vast benefits. Lots of e-marketplaces are building for several industries such as chemistry, airplane, and automobile industries. This study provides the new B2B EC business model for the shipping industry which concerns relatively massive fixed assets to be fully utilized. To be successful the proposed model gives participants useful information. To do this the expert system is constructed with the hybrid prediction system of neural network (NN) and memory based reasoning (MBR) with self-organizing map (SOM) and knowledge augmentation technique using qualitative reasoning (QR). The expert system supports participants useful information coping with dynamic market environment. with this shipping companies are induced to participate in the proposed e-marketplace and helped for exchanges easily. Also participants would utilize their assets fully through B2B exchanges.

Fuzzy TAM Network Model Using SOM (SOM을 이용한 퍼지 TAM 네트워크 모델)

  • Hong, Jung-Pyo;Hwang, Seung-Gook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.642-646
    • /
    • 2006
  • The fuzzy TAM(Topographical Attentive Mapping) network is a supervised method of pattern analysis which is composed of input layer, category layer, and output layer. But if we don't know the target value of the pattern, the network can not be trained. In this case, the target value can be replaced by a result induced by using an unsupervised neural network as the SOM (Self-organizing Map). In this paper, we apply the results of SOM to fuzzy TAM network and show its usefulness through the case study.

Dual-Phase Approach to Improve Prediction of Heart Disease in Mobile Environment

  • Lee, Yang Koo;Vu, Thi Hong Nhan;Le, Thanh Ha
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.222-232
    • /
    • 2015
  • In this paper, we propose a dual-phase approach to improve the process of heart disease prediction in a mobile environment. Firstly, only the confident frequent rules are extracted from a patient's clinical information. These are then used to foretell the possibility of the presence of heart disease. However, in some cases, subjects cannot describe exactly what has happened to them or they may have a silent disease - in which case it won't be possible to detect any symptoms at this stage. To address these problems, data records collected over a long period of time of a patient's heart rate variability (HRV) are used to predict whether the patient is suffering from heart disease. By analyzing HRV patterns, doctors can determine whether a patient is suffering from heart disease. The task of collecting HRV patterns is done by an online artificial neural network, which as well as learning knew knowledge, is able to store and preserve all previously learned knowledge. An experiment is conducted to evaluate the performance of the proposed heart disease prediction process under different settings. The results show that the process's performance outperforms existing techniques such as that of the self-organizing map and gas neural growing in terms of classification and diagnostic accuracy, and network structure.

Condition Classification for Small Reciprocating Compressors Using Wavelet Transform and Artificial Neural Network (웨이브릿 변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류)

  • Lim, D.S.;Yang, B.S.;An, B.H.;Tan, A.;Kim, D.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.29-35
    • /
    • 2003
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a classification method of diagnosing the small reciprocating compressor for refrigerators using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them ate compared with each other. This paper is focused on the development of an advanced signal classifier to automatize the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

A Study on Center Detection and Motion Analysis of a Moving Object by Using Kohonen Networks and Time Delay Neural Networks (코호넨 네트워크 및 시간 지연 신경망을 이용한 움직이는 물체의 중심점 탐지 및 동작특성 분석에 관한 연구)

  • Hwang, Jung-Ku;Kim, Jong-Young;Jang, Tae-Jeong
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.91-98
    • /
    • 2001
  • In this paper, center detection and motion analysis of a moving object are studied. Kohonen's self-organizing neural network models are used for the moving objects tracking and time delay neural networks are used for dynamic characteristic analysis. Instead of objects brightness, neuron projections by Kohonen Networks are used. The motion of target objects can be analyzed by using the differential neuron image between the two projections. The differential neuron image which is made by two consecutive neuron projections is used for center detection and moving objects tracking. The two differential neuron images which are made by three consecutive neuron projections are used for the moving trajectory estimation. It is possible to distinguish 8 directions of a moving trajectory with two frames and 16 directions with three frames.

  • PDF

A Study on Center Detection and Motion Analysis of a Moving Object by Using Kohonen Networks and Time Delay Neural Networks

  • Kim, Jong-Young;Hwang, Jung-Ku;Jang, Tae-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.63.5-63
    • /
    • 2001
  • In this paper, moving objects tracking and dynamic characteristic analysis are studied. Kohonen´s self-organizing neural network models are used for moving objects tracking and time delay neural networks are used for dynamic characteristic analysis. Instead of objects brightness, neuron projections by Kohonen Networks are used. The motion of target objects can be analyzed by using the differential neuron image between the two projections. The differential neuron image which is made by two consecutive neuron projections is used for center detection and moving objects tracking. The two differential neuron images which are made by three consecutive neuron projections are used for the moving trajectory estimation.

  • PDF

Modeling the Properties of the PECVD Silicon Dioxide Films Using Polynomial Neural Networks

  • Han, Seung-Soo;Song, Kyung-Bin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.195-200
    • /
    • 1998
  • Since the neural network was introduced, significant progress has been made on data handling and learning algorithms. Currently, the most popular learning algorithm in neural network training is feed forward error back-propagation (FFEBP) algorithm. Aside from the success of the FFEBP algorithm, polynomial neural networks (PNN) learning has been proposed as a new learning method. The PNN learning is a self-organizing process designed to determine an appropriate set of Ivakhnenko polynomials that allow the activation of many neurons to achieve a desired state of activation that mimics a given set of sampled patterns. These neurons are interconnected in such a way that the knowledge is stored in Ivakhnenko coefficients. In this paper, the PNN model has been developed using the plasma enhanced chemical vapor deposition (PECVD) experimental data. To characterize the PECVD process using PNN, SiO$_2$films deposited under varying conditions were analyzed using fractional factorial experimental design with three center points. Parameters varied in these experiments included substrate temperature, pressure, RF power, silane flow rate and nitrous oxide flow rate. Approximately five microns of SiO$_2$were deposited on (100) silicon wafers in a Plasma-Therm 700 series PECVD system at 13.56 MHz.

  • PDF

Building the Quality Management System for Compact Camera Module(CCM) Assembly Line (휴대용 카메라 모듈(CCM) 제조 라인에 대한 데이터마이닝 기반 품질관리시스템 구축)

  • Yu, Song-Jin;Kang, Boo-Sik;Hong, Han-Kook
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.4
    • /
    • pp.89-101
    • /
    • 2008
  • The most used tool for quality control is control chart in manufacturing industry. But it has limitations at current situation where most of manufacturing facilities are automated and several manufacturing processes have interdependent relationship such as CCM assembly line. To Solve problems, we propose quality management system based on data mining that are consisted of monitoring system where it monitors flows of processes at single window and feature extraction system where it predicts the yield of final product and identifies which processes have impact on the quality of final product. The quality management system uses decision tree, neural network, self-organizing map for data mining. We hope that the proposed system can help manufacturing process to produce stable quality of products and provides engineers useful information such as the predicted yield for current status, identification of causal processes for lots of abnormality.

  • PDF

Development of a Real-Time Thermal Performance Diagnostic Monitoring System Using Self-Organizing Neural Network for KORI-2 Nuclear Power Unit (자기학습 신경망을 이용한 원자력발전소 고리 2호기 실시간 열성능 진단 시스템 개발)

  • Kang, Hyun-Gook;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.36-43
    • /
    • 1996
  • In this work, a PC-based thermal performance monitoring system is developed for the nuclear power plants. The system performs real-time thermal performance monitoring and diagnosis during plant operation. Specifically, a prototype for the KORI-2 nuclear power unit is developed and examined in this work. The analysis and the fault identification of the thermal cycle of a nuclear power plant is very difficult because the system structure is highly complex and the components are very much inter-related. In this study, some major diagnostic performance parameters are selected in order to represent the thermal cycle effectively and to reduce the computing time. The Fuzzy ARTMAP, a self-organizing neural network, is used to recognize the characteristic pattern change of the performance parameters in abnormal situation. By examination, this algorithm is shown to be able to detect abnormality and to identify the fault component or the change of system operation condition successfully. For the convenience of operators, a graphical user interface is also constructed in this work.

  • PDF