In resolving industrial quality control problems, a vector of multiple quality characteristic variables is involved rather than a single variable. However, it is not guaranteed that a multivariate control chart based on statistical methods can monitor abnormal signal in case that small changes of relationship between each variables causes abnormal production process. Hence a quality control system for real-time monitoring of the multi-dimensional quality characteristic vector under a multivariate normal process is needed to enhance tile production system quality performance. A pattern analysis approach based on self-organizing map (SOM), an unsupervised learning technique of neural network, is applied to the design of such a quality control system. In this study we present a new material quality control system based on pattern analysis approach and illustrate the effectiveness of proposed system using actual electronic company material data.
The preferences of customers change over time. However, existing collaborative filtering (CF) systems are static, since they only incorporate information regarding whether a customer buys a product during a certain period and do not make use of the purchase sequences of customers. Therefore, the quality of the recommendations of the typical CF could be improved through the use of information on such sequences. In this paper, we propose a new methodology for enhancing the quality of CF recommendation that uses customer purchase sequences. The proposed methodology is applied to a large department store in Korea and compared to existing CF techniques. Various experiments using real-world data demonstrate that the proposed methodology provides higher quality recommendations than do typical CF techniques, with better performance, especially with regard to heavy users.
In this paper, we use three cluster algorithms (K-means, Self-Organizing Map, and Fuzzy K-means) to find proper graded stock market brokerage commission rates based on the cumulative transactions on both stock exchange market and HTS (Home Trading System). Stock trading investors for both modes are classified in terms of the total transaction as well as the corresponding mode of investment, respectively. Empirical analysis results indicated that fuzzy K-means cluster analysis is the best fit for the segmentation of customers of both transaction modes in terms of robustness. We then propose the rules for three grouping of customers based on decision tree and apply different brokerage commission to be 0.4%, 0.45%, and 0.5% for exchange market while 0.06%, 0.1%, 0.18% for HTS.
This paper describes a new pattern classifier neural network to extract the feature from a letter. The proposed pattern classifier is based on relative distance, which is measure between an input datum and the center of cluster group. So, the proposed classifier neural network is called relative neural network(RNN). According to definitions of the distance and the learning rule, the structure of RNN is designed and the pseudo code of the algorithm is described. In feature extraction of letter, RNN, in spite of deletion of learning rate, resulted in the identical performance with those of winner-take-all(WTA), and self-organizing-map(SOM) neural network. Thus, it is shown that RNN is suitable to extract the feature of a letter.
정보통신의 질적 양적 팽창과 더불어 컴퓨터 시스템에 대한 침입 또한 증가하고 있다. 침입탐지시스템은 이를 해결하기 위한 대표적인 수단으로, 최근 관련된 연구의 방향이 오용탐지 기법에서 비정상 행위탐지 기법으로 옮겨가고 있는 상황이다. HMM(Hiddem Markov Model)은 비정상행위탐지 기법에 사용되어 다양한 척도(measure)에 대한 정상행위를 효과적으로 모델링할 수 있는 방법이다. 다양한 척도의 결과값들로부터 침입을 판정하는 방법에 대한 연구는 미흡하다. 본 논문에서는 SOM(self organizing map)을 통해 축약된 데이터를 HMM으로 모델링한 비정상행위기반 침입탐지 시스템의 성능을 향상시키기 위해 퍼지 침입판정 방법을 제시한다. 실험결과 척도에 따른 결과들의 기계적 결합보다 향상된 결과를 얻었으며, 퍼지 관련 파라메터의 개선을 통해 더욱 좋은 효과를 기대할 수 있었다.
The use of the internet to facilitate commerce among companies promises vast benefits. Lots of e-marketplaces are building for several industries such as chemistry, airplane, and automobile industries. This study provides the new B2B EC business model for the shipping industry which concerns relatively massive fixed assets to be fully utilized. To be successful the proposed model gives participants useful information. To do this the expert system is constructed with the hybrid prediction system of neural network (NN) and memory based reasoning (MBR) with self-organizing map (SOM) and knowledge augmentation technique using qualitative reasoning (QR). The expert system supports participants useful information coping with dynamic market environment. with this shipping companies are induced to participate in the proposed e-marketplace and helped for exchanges easily. Also participants would utilize their assets fully through B2B exchanges.
본 연구는 국가중요농업유산으로 지정된 울릉도 (울릉도 화산섬 밭 농업) 나리분지와 통구미지역의 지표배회성 무척추동물 군집의 특성을 확인하기 위해 수행되었다. 서식지 형태를 작물재배지역, 산림지역, 중간 경계지역으로 나누어 서식지 형태별로 지표배회성 무척추동물을 채집하였다. 채집은 함정 트랩을 이용하였고 채집된 지표배회성 무척추동물은 자기조직화지도를 이용하여 군집 특성을 규명하였다. 자기조직화지도를 통해 총 4개의 cluster로 나누었으며, cluster II에는 통구미지역에서 채집된 지표배회성 무척추동물 군집만이 속하는 특성을 확인할 수 있었다. 나리분지 (cluster I, III, IV)와 비교하여 통구미지역 (cluster II)은 울릉도에서 흔히 확인되는 산간지역 경작지를 밭으로 개간하여 이용하는 지역으로 울릉도에서 흔히 관찰되는 지형적 특성을 가지고 있다. 이러한 통구미지역은 평지의 형태를 가지는 나리분지 지역과는 달리 급경사의 특성을 나타내기 때문에 다른 군집특성이 나타난 것으로 판단된다. 본 연구결과는 국가중요농업유산으로 선정된 울릉도지역의 생물상에 대한 기초자료와 지표배회성 무척추동물 군집 특성에 관한 정보를 제공하여 농업 환경 보전 및 생물다양성 유지를 위해 활용될 것으로 기대된다.
국내 주요 강 생태계 (한강, 금강, 영산강, 섬진강)에서 지난 2004년부터 2008년까지 총 동물플랑크톤의 탄소(C), 질소(N) 및 인(P) 함량에 대해 평가하였다. 동물플랑크톤의 건중량 당 C, N P-함량은 강 시스템별로 변화가 뚜렷하였다. 조사지점별 평균 C, N, 그리고 P-함량의 범위는 $70{\sim}620mgC\;mg^{-1}$ D.W., $7.1{\sim}85.5{\mu}gN\;mg^{-1}$ D.W. 그리고 $2.5{\sim}7.4{\mu}gP\;mg^{-1}$ D.W.인 것으로 파악되었다. 평균 탄소: 질소: 인 비율은 지점별 상이한 차이를 보였으며 전 지점의 평균은 200 : 29 : 1인 것으로 파악되었다. 전 조사지점에서의 동물플랑크톤 군집의 탄소: 인 그리고 질소: 인 비율의 범위는 각 각 38에서 392 : 1과 4에서 65 : 1이었다. 자가조직화지도(SOM)을 활용한 평면상 지점들의 배치 양상과 화학양론 자료들 간의 주요그룹 분석 결과 크게 세 클러스터로 구분되었다. 클러스터링 결과 동물플랑크톤의 C, N, P-함량은 공간적 이질성에 의해 영향을 받았으며, 화학량론 자료는 강 생태계의 환경 특성 해석에 활용성이 높은 것으로 사료되었다.
본 논문을 통해서 우리는 최적화 알고리즘인 binary harmony search (BHS) 알고리즘을 이용하여 unsupervised nonlinear classifier를 구현하는 방안을 제시하였다. 패턴인식을 위한 기계학습이나 뇌파 신호의 분석 과정과 같이 벡터로 표현되는 특징들을 분류하는데 있어 다양한 알고리즘들이 제시되었다. 교사 학습기반의 분류 방식으로는 support vector machine과 같은 기법이 사용되어왔고, 비교사 학습 방법을 통한 분류 기법으로는 fuzzy c-mean (FCM)과 같은 알고리즘들이 사용되어 왔다. 그러나 기존에 사용해 왔던 분류 방법들은 비선형 데이터 분류에 적용하기 힘들거나 교사 학습을 적용하기 위해서 사전정보를 필요로 하는 문제점이 있다. 본 논문에서는 경험적 접근을 통해 공간상에 분포된 벡터 사이의 기하학적 거리를 최소로 만드는 벡터 집합을 선택하고 이를 하나의 클래스로 간주하는 방법을 적용한 분류법을 제시하였다. 비교 대상으로 FCM과 artificial neural network (ANN) 기반의 self-organizing map (SOM)을 제시하였다. 시뮬레이션에는 KEEL machine learing dataset을 사용하였고 그 결과, 제안된 방식이 기존 알고리즘에 비해 더 나은 우수성을 지니고 있음을 확인하였다.
토압식(Earth Pressure-Balanced, EPB) 쉴드 TBM 기계데이터 분석을 통해 토사터널의 특징이 반영된 막장 전방 예측 방법을 제안하였다. 기존에 암반과 토사가 혼합된 복합 지반의 예측에 적용하였던 시계열 분석 모델을 토사터널에 적용가능하도록 수정하였다. 또한 수정된 모델을 사용하여, 토사 종류에 따라 쏘일 컨디셔닝 재료를 선택하는 것이 타당한지 연구하였다. 이를 위해 Self-Organizing Map (SOM) 군집화(clustering) 분석을 수행하였다. 그 결과 무엇보다도 지반타입이 #200체 통과량 35% 기준으로 분류되어야 한다는 것을 확인하였다. 또한 TBM 기계데이터 분석을 통해 수정된 모델이 지반 타입을 예측하는데 사용될 수 있음을 확인하였다. 수정된 기준에 따라 지반 타입을 분류하고 시계열 분석을 수행하면, 10막장 전방 지반에 대해서 98%의 높은 예측 정확도를 보였으며, 이를 통해 수정된 방법의 우수성이 입증되었다. 특히 지반 타입 변화 구간에 대한 예측 정확도도 약 93%로, 10막장 전방에서 지반 타입 변화 여부를 미리 확인할 수 있게 되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.