• Title/Summary/Keyword: selenium yeast

Search Result 34, Processing Time 0.025 seconds

Effect of Dietary Selenium Binding Yeast Peptide on Growth Performance, Tissue Se, Serum Glutathione Peroxidase Activity and Meat Quality in Finishing Pigs (비육돈에 있어서 Selenium Binding Yeast Peptide의 첨가가 생산성, 조직내 Se함량, 혈청내 GSH-Px의 활성 및 돈육의 품질에 미치는 영향)

  • 권오석;홍종욱;민병준;이원백;손경승;김인호;김진만
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1206-1211
    • /
    • 2004
  • This study was conducted to evaluate the effects of selenium binding yeast peptide supplementation on growth performance, tissue Se, serum glutathione peroxidase activity and meat quality in finishing pigs. A total of eighty (Duroc${\times}$Yorkshir${\times}$Landrace) pigs (82.88$\pm$1.23 kg average initial body weight) were used in a 35-day assay. Dietary treatments included 1) CON (basal diet), 2) SY1 (CON diet+0.05% selenium binding yeast peptide), 3) SY2 (CON diet+0.l% selenium binding yeast peptide) and 4) SY3 (CON diet+0.2% selenium binding yeast peptide). Overall period, average daily gain of pigs fed selenium binding yeast peptide diet was higher than that of pigs fed CON diet, however, there was not significant difference (p>0.05). L* (lightness) value of M. longissimus dorsi was higher in SY2 than CON and SY3 (p<0.05). a* (redness) value of M. longissimus dorsi was lower in CON than other treatments (p<0.05). Selenium content in serum was increased as adding selenium binding yeast peptide compared to pigs fed CON diet. However, there was not significantly different among the treatments (p>0.05). Selenium content of M. longissimus dorsi was higher in SY2 (0.021 $\mu$g/g) and SY3 (0.031 $\mu$g/g) than CON diet (0.008 $\mu$g/g) (p<0.05). Selenium content of kidney was increased in SY2 I and SY3 compared to pigs fed CON and SY1 (p<0.05). Selenium content of liver was higher in SY1 than CON (p<0.05). In conclusion, it is suggested that selenium content could be accumulated in M. longissimus dorsi, kidney and liver by selenium binding yeast peptide supplementation, and meat color of M. longissimus dorsi could be affected by selenium binding yeast peptide supplementation.

Effects of selenium-rich yeast supplementation on the plasma progesterone levels of postpartum dairy cows

  • Kamada, Hachiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.347-354
    • /
    • 2017
  • Objective: The effects of the pre- and postpartum supplementation of cows with Se on their plasma P4 concentrations after calving were investigated. Methods: Thirty-four Holstein cows were used to investigate the effects of dietary selenium supplementation on the postpartum recovery of the luteal function in cows. Selenium-rich yeast (containing 300 ppm selenium) was mixed with total mixed ration fed to 17 pregnant cows from 30 days before they were due to calve (10 g yeast daily) to 100 days after calving (20 g yeast daily). The control cows (n = 17) were fed the same amount of ordinary yeast. The cows' plasma progesterone concentrations were determined every two days using an enzyme immunoassay after calving. Results: Feed intake (total digestive nutrient, crude protein), milk production, body weight and the biochemical properties of blood plasma did not differ between the two groups; however, the plasma selenium concentrations of the supplemented animals were significantly greater than those of the controls at and after calving. The postpartum plasma progesterone concentrations of the selenium-yeast-supplemented group increased earlier than those of the control group. Moreover, during the estrus cycle after the 3rd ovulation or ovulation with estrus between 60 to 80 days after calving, the selenium-supplemented cows exhibited greater progesterone concentrations than the control cows. Conclusion: Selenium supplementation promotes the postpartum progesterone production of cows.

Production of selenium peptide from yeast

  • Kim, Yeong-Ok;Kim, Eun-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.208-210
    • /
    • 2002
  • Baker's yeast was cultured with $Na_2SeO_3$. Selenium compounds in yeast were extracted and analyzed by size exclusion chromatography. Selenium was broadly distributed in the fraction of protein. For the inhibition test of MMP-l induction, selenium containing compounds was fractioned by ultrafiltration

  • PDF

Production and Characterization of Selenium Peptide from Saccharomyces Cerevisiae (효모를 이용한 selenium peptide 생산 및 특성 연구)

  • 김은기;김영옥;이정옥;이백석
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.73-77
    • /
    • 2004
  • Selenium containing peptide was produced by culturing yeast with selenium, Selenium was broadly incorporated in the various size of proteins based on the GPC analysis of the total yeast protein. The ratio of selenium to protein increased with the concentration of added selenium in the culture medium. Antioxidant activity (glutathione peroxidase-like activity) was proportional to the concentration of selenium concentration in the peptide. Different size of proteins were obtained by hydrolyzing the total yeast protein by protease XIV. Average molecular weight of selenium peptide was analyzed by GPC. Glutathione peroxidase (GPx) activity of the selenium peptide increased as the size of peptide decreased. Sodium selenite had strong inhibition on the yeast growth than sodium selenate. The ratio of selenium to protein was higher with sodium selenate than with sodium selenite. These results showed the potentials of selenium peptide production by yeast cultivation.

The Effect of Pulse Electric Field on Accumulation of Selenium in Cells of Saccharomyces cerevisiae

  • Pankiewicz, Urszula;Jamroz, Jerzy
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1139-1146
    • /
    • 2007
  • Cultures of Saccharomyces cerevisiae were subjected to the effect of PEF (pulse electric field) and a source of selenium. The culture period after which yeast cells were subjected to PEF treatment was optimized, as was the duration of the exposure. Optimization of the nutrient medium composition in S. cerevisiae cultures resulted in an over 1.8-fold increase in selenium accumulation with relation to cultures on the initial substrate. Optimization of the pH value and of culture duration resulted in selenium accumulation increase by approximately 78%. A significant correlation was found between the accumulation of selenium in yeast cells and its concentration in the culture substrate. The highest accumulation of selenium in the biomass of yeast, approx. $240\;{\mu}g/g$ d.m., was obtained after 15-min exposure to PEF on a 20-h culture. An approx. 50% higher content of selenium in cells was recorded, as compared with the control culture without the application of PEF.

The Distribution of Selenium in Proteins of Saccaromyces Cerevisia and Analysis of Selenomethionine in Specific Protein (효모단백질내의 셀레늄 분포 및특정단백질내의 셀레노메티오닌 분석)

  • Shim Heeyoung Shim;Sangwook Ahn;Yonghyun Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.363-369
    • /
    • 2003
  • Selenized yeast (Se yeast) containing $0.1{\%}$(w/w) of selenium was obtained when the yeast was incubated at a selenium concentration of 1$1.14{\times}10_-3 M$ in rich medium. After washing several times, the inorganic selenium on the cell wall was confirmed with MBRT. There was no indication of inorganic selenium on the cell wall when the blue color in MBRT was stayed for 15 minutes. The selenized yeast was sonicated, then the selenium contained protein was obtained after salting out by ammonium sulfate at the concentration $80{\%}$ saturation. The seven protein bands were seperated by SDS-PAGE and the selenium concentration in protein was measured by ICP-AES. Analytical data showed that the large expressed protein band contained a relatively large amount of selenium. The proteins of the 47kDa was contained the concentrations of 69.5 ${\mu}$ Se/g of most many content. The protein (47 kDa) was seperated from PVDF membrane by tank-electroblotting. The isolated protein was hydrolyzed under acid condition and reacted with PITC. The derivatives of amino acids were analyzed by HPLC and compared with the data obtained from regular yeast. The resulting selenium-yeast was analyzed with the selenomethionine concentration of $2{\%}$ comparaed with general amino acids. The goal of this study is to analyze the selenium concentration in protein bands and measure the degree of biotransformation of selenomethionine in a specific protein.

Production of Selenium Peptide by Autolysis of Saccharomyces cerevisiae

  • Lee Jung-Ok;Kim Young-Ok;Shin Dong-Hoon;Shin Jeong-Hyun;Kim Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1041-1046
    • /
    • 2006
  • Selenium-containing peptide (selenium peptide) was produced by autolysis of total proteins of Saccharomyces cerevisiae grown with inorganic selenium. Selenium peptide exhibited antioxidant activity as a glutathione peroxidase (GPx) mimic, and its activity was dependent on the hydrolysis methods. The GPx-like activity of the hydrolyzed selenium peptide increased 2.7-folds when digested by protease, but decreased by acid hydrolysis. During the autolysis of the yeast cell, the GPx-like activity and selenium content increased 4.3- and 2.3-folds, respectively, whereas the average molecular weight (MW) of selenium peptide decreased 70%. The GPx-like activity was dependent on the MW of selenium peptide and was the highest (220 U/mg protein) at 9,500 dalton. The maximum GPx-like activity (28,600 U/g cell) was obtained by 48 h of autolysis of the cells, which were precultured with 20 ppm of selenate. Selenium peptide showed little toxicity, compared with highly toxic inorganic selenium. These results show the potential of selenium peptide as a nontoxic antioxidant that can be produced by simple autolysis of yeast cells.

Separation and identification of selenoproteins in selenium-enriched yeast (셀레늄이 강화된 이스트에서 셀레늄 단백질의 분리 및 확인)

  • Kim, Kyong-Mi;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.357-363
    • /
    • 2013
  • Selenium-containing proteins were separated from selenium-enriched yeast (SEY) using Trizol$^{(R)}$ reagent followed by anion exchange (AE) chromatography. This method is simpler and less time consuming than electrophoresis. Five selenium containing proteins were identified by on-line AE HPLC-ICP/MS (high performance liquid chromatography-inductively coupled plasma/mass spectrometry). Each protein was enzymatically hydrolyzed to seleno-amino acids and separated with RP (reverse phase) HPLC for the identification of selenoproteins.

Determination of Selenium in Dried Yeast Preparations (셀레늄 함유 건조효모제제 중 셀레늄 분석방법에 관한 연구)

  • Oh, Sea-Jong;Oh, Young-Taek;Yoon, Won-Yong;Park, Sung-Bae
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.1
    • /
    • pp.29-32
    • /
    • 1994
  • In order to improve the sensitivity of the current assay methods of selenium in dried-yeast preparations, atomic absorption spectrophotometry (AAS), high performance liquid chromatography (HPLC) and UV-Vis spectrophotometry were employed. The sample was prepared with the digestion by acid mixture of hydrochloric acid, nitric acid and perchloric acid after elimination of ether-soluble substances. The range of quantitation of selenium was $1.0{\sim}6.0\;{\mu}g/ml$ by UV-Vis spectrophotometry, $5.0{\sim}20.0\;{\mu}g/ml$ by HPLC and $0.03{\sim}0.10\;{\mu}g/ml$ by AAS.

  • PDF

Effects of L-carnitine, Selenium-enriched Yeast, Jujube Fruit and Hwangto (Red Clay) Supplementation on Performance and Carcass Measurements of Finishing Pigs

  • Han, Yung-Keun;Thacker, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.217-223
    • /
    • 2006
  • Fifty castrated crossbred ($Landrace{\times}Yorkshire$) pigs, weighing an average of $60.6{\pm}3.1kg$ were allotted to one of five treatments in a randomized block design to examine the effects of dietary inclusion of 0.1% L-carnitine (50 ppm carnitine), 0.1% selenium-enriched yeast (0.3 ppm selenium), 0.1% Jujube fruit or 0.1% Hwangto (Red clay) on pig performance and carcass quality. All diets were based on corn, wheat, soybean meal and wheat bran and were formulated to supply 13.8 MJ DE/kg. Dietary supplementation did not influence daily gain (p = 0.57), feed intake (p = 0.52), or feed conversion (p = 0.32). Digestibility of dry matter (p = 0.60), organic matter (p = 0.74), crude protein (p = 0.76), crude fibre (p = 0.70) and energy (p = 0.75) were also unaffected by inclusion of any of the additives. Tissue samples taken from the longissimus muscle showed that the levels of carnitine (p = 0.0001) and selenium (p = 0.0001) were significantly higher with dietary inclusion of carnitine or selenium-enriched yeast. Dietary treatment did not affect dressing percentage (p = 0.33), carcass lean yield (p = 0.99) or first, $10^{th}$ and last rib midline backfat depth (p = 0.45, 0.82 and 0.47, respectively). Dietary treatment also did not affect the percentages of tenderloin (p = 0.37), bacon (p = 0.36), fat and bone (p = 0.56), picnic shoulder (p = 0.25), skirt (p = 0.80), fresh ham (p = 0.31) or ribs (p = 0.79). However, pigs fed the diet containing Jujube fruit had a higher percentage of Boston butt than pigs fed the carnitine or selenium supplemented diets (p = 0.01). Pigs fed added Hwangto had a higher (p = 0.04) percentage of loin compared with pigs fed supplementary selenium or Jujube fruit. Loin muscle from pigs fed carnitine had a significantly lower Hunter colour value for L (whiteness, p = 0.004) and a higher value for $a^*$ (redness; p = 0.069). The overall results indicate that supplementation with L-carnitine and selenium-enriched yeast can produce pork containing higher levels of carnitine and selenium, which could provide health benefits for consumers of pork without detrimental effects on pig performance.