• Title/Summary/Keyword: selection of features

Search Result 911, Processing Time 0.026 seconds

Feature extraction method using graph Laplacian for LCD panel defect classification (LCD 패널 상의 불량 검출을 위한 스펙트럴 그래프 이론에 기반한 특성 추출 방법)

  • Kim, Gyu-Dong;Yoo, Suk-I.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.522-524
    • /
    • 2012
  • For exact classification of the defect, good feature selection and classifier is necessary. In this paper, various features such as brightness features, shape features and statistical features are stated and Bayes classifier using Gaussian mixture model is used as classifier. Also feature extraction method based on spectral graph theory is presented. Experimental result shows that feature extraction method using graph Laplacian result in better performance than the result using PCA.

OPTIMAL PORTFOLIO SELECTION WITH TRANSACTION COSTS WHEN AN ILLIQUID ASSET PAYS CASH DIVIDENDS

  • Jang, Bong-Gyu
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.139-150
    • /
    • 2007
  • We investigate an optimal portfolio selection problem with transaction costs when an illiquid asset pays cash dividends and there are constraints on the illiquid asset holding. We provide closed form solutions for the problem, and by using these solutions we illustrate interesting features of optimal policies.

AUTOMATIC SELECTION AND ADJUSTMENT OF FEATURES FOR IMAGE CLASSIFICATION

  • Saiki, Kenji;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.525-528
    • /
    • 2009
  • Recently, image classification has been an important task in various fields. Generally, the performance of image classification is not good without the adjustment of image features. Therefore, it is desired that the way of automatic feature extraction. In this paper, we propose an image classification method which adjusts image features automatically. We assume that texture features are useful in image classification tasks because natural images are composed of several types of texture. Thus, the classification accuracy rate is improved by using distribution of texture features. We obtain texture features by calculating image features from a current considering pixel and its neighborhood pixels. And we calculate image features from distribution of textures feature. Those image features are adjusted to image classification tasks using Genetic Algorithm. We apply proposed method to classifying images into "head" or "non-head" and "male" or "female".

  • PDF

Hybrid Pattern Recognition Using a Combination of Different Features

  • Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.9-16
    • /
    • 2015
  • We propose a hybrid pattern recognition method that effectively combines two different features for improving data classification. We first extract the PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) features, both of which are widely used in pattern recognition, to construct a set of basic features, and then evaluate the separability of each basic feature. According to the results of evaluation, we select only the basic features that contain a large amount of discriminative information for construction of the combined features. The experimental results for the various data sets in the UCI machine learning repository show that using the proposed combined features give better recognition rates than when solely using the PCA or LDA features.

A Step towards the Improvement in the Performance of Text Classification

  • Hussain, Shahid;Mufti, Muhammad Rafiq;Sohail, Muhammad Khalid;Afzal, Humaira;Ahmad, Ghufran;Khan, Arif Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2162-2179
    • /
    • 2019
  • The performance of text classification is highly related to the feature selection methods. Usually, two tasks are performed when a feature selection method is applied to construct a feature set; 1) assign score to each feature and 2) select the top-N features. The selection of top-N features in the existing filter-based feature selection methods is biased by their discriminative power and the empirical process which is followed to determine the value of N. In order to improve the text classification performance by presenting a more illustrative feature set, we present an approach via a potent representation learning technique, namely DBN (Deep Belief Network). This algorithm learns via the semantic illustration of documents and uses feature vectors for their formulation. The nodes, iteration, and a number of hidden layers are the main parameters of DBN, which can tune to improve the classifier's performance. The results of experiments indicate the effectiveness of the proposed method to increase the classification performance and aid developers to make effective decisions in certain domains.

CRF Based Intrusion Detection System using Genetic Search Feature Selection for NSSA

  • Azhagiri M;Rajesh A;Rajesh P;Gowtham Sethupathi M
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.131-140
    • /
    • 2023
  • Network security situational awareness systems helps in better managing the security concerns of a network, by monitoring for any anomalies in the network connections and recommending remedial actions upon detecting an attack. An Intrusion Detection System helps in identifying the security concerns of a network, by monitoring for any anomalies in the network connections. We have proposed a CRF based IDS system using genetic search feature selection algorithm for network security situational awareness to detect any anomalies in the network. The conditional random fields being discriminative models are capable of directly modeling the conditional probabilities rather than joint probabilities there by achieving better classification accuracy. The genetic search feature selection algorithm is capable of identifying the optimal subset among the features based on the best population of features associated with the target class. The proposed system, when trained and tested on the bench mark NSL-KDD dataset exhibited higher accuracy in identifying an attack and also classifying the attack category.

Feature Selecting and Classifying Integrated Neural Network Algorithm for Multi-variate Classification (다변량 데이터의 분류 성능 향상을 위한 특질 추출 및 분류 기법을 통합한 신경망 알고리즘)

  • Yoon, Hyun-Soo;Baek, Jun-Geol
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.97-104
    • /
    • 2011
  • Research for multi-variate classification has been studied through two kinds of procedures which are feature selection and classification. Feature Selection techniques have been applied to select important features and the other one has improved classification performances through classifier applications. In general, each technique has been independently studied, however consideration of the interaction between both procedures has not been widely explored which leads to a degraded performance. In this paper, through integrating these two procedures, classification performance can be improved. The proposed model takes advantage of KBANN (Knowledge-Based Artificial Neural Network) which uses prior knowledge to learn NN (Neural Network) as training information. Each NN learns characteristics of the Feature Selection and Classification techniques as training sets. The integrated NN can be learned again to modify features appropriately and enhance classification performance. This innovative technique is called ALBNN (Algorithm Learning-Based Neural Network). The experiments' results show improved performance in various classification problems.

A GIS, GPS, Database, Internet GIS $software{\copyright}$ The First Arabian GIS $Software\copyright}$

  • El-Shayal, Mohamed El-Sayed
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.695-697
    • /
    • 2006
  • Elshayal $Smart{\copyright}$ software is an almost First Arabian GIS $software{\copyright}$ which completely developed by Arabian developers team and independent of any commercial software package. The software current Features are View and Edit shape files, build new layers, add existing layers, remove layers, swap layers, save layers, set layer data sources, layer properties, zoom in & zoom out, pan, identify, selecting features, invert selection, show data table, data query builder, location query builder, build network, find shortest path, print map, save map image, copy map image to clipboard, save project map, edit move vertex, edit move features, snap vertexes, set vertex XY, move settings, converting coordinate system, applying VB script, copy selected features to another layer, move selected features to another layer, delete selected features, edit data table, modify table structure, edit map features, drawing new features, GPS tracking, 3D view, etc... The software expected Features are: Viewing raster image and image geo-referencing, read other map formats such as DXF Format and Tiger Line Format.

  • PDF

Removing Non-informative Features by Robust Feature Wrapping Method for Microarray Gene Expression Data (유전자 알고리즘과 Feature Wrapping을 통한 마이크로어레이 데이타 중복 특징 소거법)

  • Lee, Jae-Sung;Kim, Dae-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.8
    • /
    • pp.463-478
    • /
    • 2008
  • Due to the high dimensional problem, typically machine learning algorithms have relied on feature selection techniques in order to perform effective classification in microarray gene expression datasets. However, the large number of features compared to the number of samples makes the task of feature selection computationally inprohibitive and prone to errors. One of traditional feature selection approach was feature filtering; measuring one gene per one step. Then feature filtering was an univariate approach that cannot validate multivariate correlations. In this paper, we proposed a function for measuring both class separability and correlations. With this approach, we solved the problem related to feature filtering approach.

Combined Feature Set and Hybrid Feature Selection Method for Effective Document Classification (효율적인 문서 분류를 위한 혼합 특징 집합과 하이브리드 특징 선택 기법)

  • In, Joo-Ho;Kim, Jung-Ho;Chae, Soo-Hoan
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.49-57
    • /
    • 2013
  • A novel approach for the feature selection is proposed, which is the important preprocessing task of on-line document classification. In previous researches, the features based on information from their single population for feature selection task have been selected. In this paper, a mixed feature set is constructed by selecting features from multi-population as well as single population based on various information. The mixed feature set consists of two feature sets: the original feature set that is made up of words on documents and the transformed feature set that is made up of features generated by LSA. The hybrid feature selection method using both filter and wrapper method is used to obtain optimal features set from the mixed feature set. We performed classification experiments using the obtained optimal feature sets. As a result of the experiments, our expectation that our approach makes better performance of classification is verified, which is over 90% accuracy. In particular, it is confirmed that our approach has over 90% recall and precision that have a low deviation between categories.