Journal of Korean Society of Industrial and Systems Engineering
/
v.38
no.2
/
pp.108-119
/
2015
This study intends to propose a non-oriented DEA based game cross-efficiency approach for supplier selection. With a discussion on the choice of DEA models and approaches that are most appropriate for supplier selection, we propose a game cross efficiency model based upon the non-oriented variable returns-to-scale RAM DEA by adapting the existing game cross efficiency model based upon the oriented constant returns-to-scale CCR DEA. We develop the RAM game cross efficiency model and a convergent iterative solution procedure to find the best game cross efficiency scores that constitute a Nash equilibrium. We illustrate the proposed model with two data sets of supplier selection, and demonstrate that significantly different results are obtained when compared with the existing approaches.
Journal of Korean Institute of Industrial Engineers
/
v.32
no.1
/
pp.18-28
/
2006
Some issues which should be considered in an R&D project selection problem are as follows: First, quantitative analysis on the efficiencies of R&D projects is required to guarantee objective validity in the evaluation of the projects. For this reason, the methodology for selecting R&D projects should be based on mathematical models that perform quantitative analysis. Second, in general there are ordinal factors like Likert-scale in the data for evaluating R&D projects. Previous researches, however, couldn't suggest explicit methods incorporating these ordinal factors into models. Third, for the R&D project selection problems with limited resources like budget, it is necessary to decide the perfect ranking of the all projects. This paper develops a mathematical model that can be applicable to the problems of selecting R&D projects with the previous features. In this paper, we improve the original DEA model for evaluating efficiency to incorporate ordinal factors and suggest a new model which can decide the perfect ranking of all projects by merging the improved DEA model and AHP method. Furthermore a web-based R&D project selection system using the DEA/AHP model suggested in this paper is developed and illustrated.
Communications for Statistical Applications and Methods
/
v.18
no.3
/
pp.319-331
/
2011
In this paper, we propose automatic procedures for the model selection of various univariate time series data. Automatic model selection is important, especially in data mining with large number of time series, for example, the number (in thousands) of signals accessing a web server during a specific time period. Several methods have been proposed for automatic model selection of time series. However, most existing methods focus on linear time series models such as exponential smoothing and autoregressive integrated moving average(ARIMA) models. The key feature that distinguishes the proposed procedures from previous approaches is that the former can be used for both linear time series models and nonlinear time series models such as threshold autoregressive(TAR) models and autoregressive moving average-generalized autoregressive conditional heteroscedasticity(ARMA-GARCH) models. The proposed methods select a model from among the various models in the prediction error sense. We also provide an R package autots that implements the proposed automatic model selection procedures. In this paper, we illustrate these algorithms with the artificial and real data, and describe the implementation of the autots package for R.
As buildings become larger and more complicated, construction costs have increased with a considerable effect on buildings' Life Cycle Cost (LCC). However, there has been little consideration on economic aspects in the selection of construction materials due to limited information on the materials and dependency in architects' experience and inefficiency in cost estimation, causing design changes, increase in maintenance cost, difficulty in budgeting, and decrease in building performance. To solve these problems, this study proposed a BIM-based material selection model which reflects the comprehensive economic efficiency of building materials. Our cost prediction model can estimates the material-related cost during the entire building life cycle. Furthermore, we implemented the proposed model in connection with BIM, which can analyze and compare LCC by material. Through the validation of the model, we could confirm the necessity of LCC-based material selection in comparison with the conventional cost-centered material selection.
Effective and efficient selection of IT projects is crucial for company's competitiveness. The selection of IT projects usually involves consideration of budget constraints but existing IT project selection models often neglect budget constraints. This paper presents an IT project selection model which considers budget constraints. AHP(Analytic Hierarchy Process) and Knapsack problem model have been combined to develop the proposed model, AHP-K model, where AHP is used to estimate weights of selection criteria and, then, a knapsack problem model is utilized to optimize selection of IT project while meeting the budget constraints. In this paper, a case study is provided to validate the effectiveness of the proposed AHP-K model. It has been shown that the proposed AHP-K model is better than the AHP model in terms of total utility of projects and investment efficiency.
Journal of the Korean Data and Information Science Society
/
v.24
no.6
/
pp.1543-1550
/
2013
In this paper, we study Bayesian estimation for the finite population proportion in binary data under selection bias. We use a Bayesian nonignorable selection model to accommodate the selection mechanism. We compare four possible estimators of the finite population proportions based on data analysis as well as Monte Carlo simulation. It turns out that nonignorable selection model might be useful for weekly biased samples.
Proceedings of the Korean Society of Crop Science Conference
/
2022.10a
/
pp.233-233
/
2022
As the world's population grows and food needs diversify, the demand for horticultural crops for beneficial traits is increasing. In order to meet this demand, it is necessary to develop suitable cultivars and breeding methods accordingly. Breeding methods have changed over time. With the recent development of sequencing technology, the concept of genomic selection (GS) has emerged as large-scale genome information can be used. GS shows good predictive ability even for quantitative traits by using various markers, breaking away from the limitations of Marker Assisted Selection (MAS). Moreover, GS using machine learning (ML) and deep learning (DL) has been studied recently. In this study, we aim to build a system that selects phenotype-related markers using the genomic information of the pepper population and trains a genomic selection model to select individuals from the validation population. We plan to establish an optimal genome wide association analysis model by comparing and analyzing five models. Validation of molecular markers by applying linkage markers discovered through genome wide association analysis to breeding populations. Finally, we plan to establish an optimal genome selection model by comparing and analyzing 12 genome selection models. Then We will use the genome selection model of the learning group in the breeding group to verify the prediction accuracy and discover a prediction model.
Communications for Statistical Applications and Methods
/
v.19
no.3
/
pp.345-358
/
2012
In a parametric sample selection model, the distribution assumption is critical to obtain consistent estimates. Conventionally, the normality assumption has been adopted for both error terms in selection and main equations of the model. The normality assumption, however, may excessively restrict the true underlying distribution of the model. This study introduces the $S_U$-normal distribution into the error distribution of a sample selection model. The $S_U$-normal distribution can accommodate a wide range of skewness and kurtosis compared to the normal distribution. It also includes the normal distribution as a limiting distribution. Moreover, the $S_U$-normal distribution can be easily extended to multivariate dimensions. We provide the log-likelihood function and expected value formula based on a bivariate $S_U$-normal distribution in a sample selection model. The results of simulations indicate the $S_U$-normal model outperforms the normal model for the consistency of estimators. As an empirical application, we provide the sample selection model for car ownership and a car expense relationship.
For the problem of variable selection in linear models, we consider the errors are correlated with V covariance matrix. Hocking's theorems on the effects of the overfitting and the underfitting in linear model are extended to the less than full rank and correlated error model, and to the ANCOVA model.
Proceedings of the Korean Statistical Society Conference
/
2005.11a
/
pp.187-192
/
2005
For the problem of variable selection in linear models, we consider the errors are correlated with V covariance matrix. Hocking's theorems on the effects of the overfitting and the undefitting in linear model are extended to the less than full rank and correlated error model, and to the ANCOVA model
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.