• Title/Summary/Keyword: selection model

Search Result 4,107, Processing Time 0.042 seconds

A Non-Oriented DEA Game Cross Efficiency Model for Supplier Selection (비방향 DEA 게임 교차효율성을 이용한 공급업체 선정방법)

  • Lim, Sungmook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.2
    • /
    • pp.108-119
    • /
    • 2015
  • This study intends to propose a non-oriented DEA based game cross-efficiency approach for supplier selection. With a discussion on the choice of DEA models and approaches that are most appropriate for supplier selection, we propose a game cross efficiency model based upon the non-oriented variable returns-to-scale RAM DEA by adapting the existing game cross efficiency model based upon the oriented constant returns-to-scale CCR DEA. We develop the RAM game cross efficiency model and a convergent iterative solution procedure to find the best game cross efficiency scores that constitute a Nash equilibrium. We illustrate the proposed model with two data sets of supplier selection, and demonstrate that significantly different results are obtained when compared with the existing approaches.

Development of R&D Project Selection Model and Web-based R&D Project Selection System using Hybrid DEA/AHP Model (DEA/AHP 모형을 이용한 R&D 프로젝트 선정모형 및 Web 기반 R&D 프로젝트 선정시스템 개발)

  • Lee, Deok-Joo;Bae, Sungsik;Kang, Jinsoo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.1
    • /
    • pp.18-28
    • /
    • 2006
  • Some issues which should be considered in an R&D project selection problem are as follows: First, quantitative analysis on the efficiencies of R&D projects is required to guarantee objective validity in the evaluation of the projects. For this reason, the methodology for selecting R&D projects should be based on mathematical models that perform quantitative analysis. Second, in general there are ordinal factors like Likert-scale in the data for evaluating R&D projects. Previous researches, however, couldn't suggest explicit methods incorporating these ordinal factors into models. Third, for the R&D project selection problems with limited resources like budget, it is necessary to decide the perfect ranking of the all projects. This paper develops a mathematical model that can be applicable to the problems of selecting R&D projects with the previous features. In this paper, we improve the original DEA model for evaluating efficiency to incorporate ordinal factors and suggest a new model which can decide the perfect ranking of all projects by merging the improved DEA model and AHP method. Furthermore a web-based R&D project selection system using the DEA/AHP model suggested in this paper is developed and illustrated.

Extending the Scope of Automatic Time Series Model Selection: The Package autots for R

  • Jang, Dong-Ik;Oh, Hee-Seok;Kim, Dong-Hoh
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.319-331
    • /
    • 2011
  • In this paper, we propose automatic procedures for the model selection of various univariate time series data. Automatic model selection is important, especially in data mining with large number of time series, for example, the number (in thousands) of signals accessing a web server during a specific time period. Several methods have been proposed for automatic model selection of time series. However, most existing methods focus on linear time series models such as exponential smoothing and autoregressive integrated moving average(ARIMA) models. The key feature that distinguishes the proposed procedures from previous approaches is that the former can be used for both linear time series models and nonlinear time series models such as threshold autoregressive(TAR) models and autoregressive moving average-generalized autoregressive conditional heteroscedasticity(ARMA-GARCH) models. The proposed methods select a model from among the various models in the prediction error sense. We also provide an R package autots that implements the proposed automatic model selection procedures. In this paper, we illustrate these algorithms with the artificial and real data, and describe the implementation of the autots package for R.

Evaluation and Selection of Building Materials based on Life Cycle Cost Prediction (생애주기비용 예측 기반 건물재료 경제성 평가 및 선정)

  • Ahn, Junghwan;Lim, Jinkang;Oh, Minho;Lee, Jaewook
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.34-45
    • /
    • 2015
  • As buildings become larger and more complicated, construction costs have increased with a considerable effect on buildings' Life Cycle Cost (LCC). However, there has been little consideration on economic aspects in the selection of construction materials due to limited information on the materials and dependency in architects' experience and inefficiency in cost estimation, causing design changes, increase in maintenance cost, difficulty in budgeting, and decrease in building performance. To solve these problems, this study proposed a BIM-based material selection model which reflects the comprehensive economic efficiency of building materials. Our cost prediction model can estimates the material-related cost during the entire building life cycle. Furthermore, we implemented the proposed model in connection with BIM, which can analyze and compare LCC by material. Through the validation of the model, we could confirm the necessity of LCC-based material selection in comparison with the conventional cost-centered material selection.

A Study on the IT Project Selection Considering Budget Constraints (예산제약을 고려한 IT프로젝트 선정 모델 연구)

  • Park, Jaehee;Cho, Nam-Wook;Kim, Wooje
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.4
    • /
    • pp.327-338
    • /
    • 2013
  • Effective and efficient selection of IT projects is crucial for company's competitiveness. The selection of IT projects usually involves consideration of budget constraints but existing IT project selection models often neglect budget constraints. This paper presents an IT project selection model which considers budget constraints. AHP(Analytic Hierarchy Process) and Knapsack problem model have been combined to develop the proposed model, AHP-K model, where AHP is used to estimate weights of selection criteria and, then, a knapsack problem model is utilized to optimize selection of IT project while meeting the budget constraints. In this paper, a case study is provided to validate the effectiveness of the proposed AHP-K model. It has been shown that the proposed AHP-K model is better than the AHP model in terms of total utility of projects and investment efficiency.

Bayesian estimation for finite population proportion under selection bias via surrogate samples

  • Choi, Seong Mi;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1543-1550
    • /
    • 2013
  • In this paper, we study Bayesian estimation for the finite population proportion in binary data under selection bias. We use a Bayesian nonignorable selection model to accommodate the selection mechanism. We compare four possible estimators of the finite population proportions based on data analysis as well as Monte Carlo simulation. It turns out that nonignorable selection model might be useful for weekly biased samples.

Construction of an Analysis System Using Digital Breeding Technology for the Selection of Capsicum annuum

  • Donghyun Jeon;Sehyun Choi;Yuna Kang;Changsoo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.233-233
    • /
    • 2022
  • As the world's population grows and food needs diversify, the demand for horticultural crops for beneficial traits is increasing. In order to meet this demand, it is necessary to develop suitable cultivars and breeding methods accordingly. Breeding methods have changed over time. With the recent development of sequencing technology, the concept of genomic selection (GS) has emerged as large-scale genome information can be used. GS shows good predictive ability even for quantitative traits by using various markers, breaking away from the limitations of Marker Assisted Selection (MAS). Moreover, GS using machine learning (ML) and deep learning (DL) has been studied recently. In this study, we aim to build a system that selects phenotype-related markers using the genomic information of the pepper population and trains a genomic selection model to select individuals from the validation population. We plan to establish an optimal genome wide association analysis model by comparing and analyzing five models. Validation of molecular markers by applying linkage markers discovered through genome wide association analysis to breeding populations. Finally, we plan to establish an optimal genome selection model by comparing and analyzing 12 genome selection models. Then We will use the genome selection model of the learning group in the breeding group to verify the prediction accuracy and discover a prediction model.

  • PDF

An Alternative Parametric Estimation of Sample Selection Model: An Application to Car Ownership and Car Expense (비정규분포를 이용한 표본선택 모형 추정: 자동차 보유와 유지비용에 관한 실증분석)

  • Choi, Phil-Sun;Min, In-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.345-358
    • /
    • 2012
  • In a parametric sample selection model, the distribution assumption is critical to obtain consistent estimates. Conventionally, the normality assumption has been adopted for both error terms in selection and main equations of the model. The normality assumption, however, may excessively restrict the true underlying distribution of the model. This study introduces the $S_U$-normal distribution into the error distribution of a sample selection model. The $S_U$-normal distribution can accommodate a wide range of skewness and kurtosis compared to the normal distribution. It also includes the normal distribution as a limiting distribution. Moreover, the $S_U$-normal distribution can be easily extended to multivariate dimensions. We provide the log-likelihood function and expected value formula based on a bivariate $S_U$-normal distribution in a sample selection model. The results of simulations indicate the $S_U$-normal model outperforms the normal model for the consistency of estimators. As an empirical application, we provide the sample selection model for car ownership and a car expense relationship.

Variable Selection Theorems in General Linear Model

  • Park, Jeong-Soo;Yoon, Sang-Hoo
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.171-179
    • /
    • 2006
  • For the problem of variable selection in linear models, we consider the errors are correlated with V covariance matrix. Hocking's theorems on the effects of the overfitting and the underfitting in linear model are extended to the less than full rank and correlated error model, and to the ANCOVA model.

  • PDF

Variable Selection Theorems in General Linear Model

  • Yoon, Sang-Hoo;Park, Jeong-Soo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.187-192
    • /
    • 2005
  • For the problem of variable selection in linear models, we consider the errors are correlated with V covariance matrix. Hocking's theorems on the effects of the overfitting and the undefitting in linear model are extended to the less than full rank and correlated error model, and to the ANCOVA model

  • PDF