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Variable Selection Theorems in General Linear Model’

Jeong Soo Park’, Sang Hoo Yoon®

Abstract

For the problem of variable selection in linear models, we consider the errors are
correlated with V covariance matrix. Hocking’s theorems on the effects of the overfitting
and the underfitting in linear model are extended to the less than full rank and correlated
error model, and to the ANCOVA model.
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1. Introduction

The primary purpose of this paper is to provide a review of the concepts associated with
variable selection in general linear models, the errors are correlated with V covariance matrix.
Also, we discuss general results for the situation where the matrix of predictors need not have
full rank.

The problem of determining the “best” subset of variables has long been of interest to
applied statisticians and, primarily because of the current availability of high-speed
computations, this problem has received considerable attention in the recent statistical
literature(Seber and Lee, 2003).

The problem of overfitting(i.e, putting too many predictors in a linear model) has been
addressed by Helms(1974) and Hocking(1976). It supports that deleting independent variables
corresponding to small coefficients(relative to their standard errors) will lead to high precision
in the estimates of coefficients corresponding to the retained variables.

Hocking’s theorems have been described in many textbook on linear model, for example
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in Park(2001) and Ravishanker and Dey(2001). These theorems are extended to the less than
full rank and correlated errors model, and to the analysis of covariance model.

2. Notation and Basic Concepts

Consider the general linear model
y=xpB+ e, Var(e) =c*V. 2.1

where V is a known NXN positive definite covariance matrix, y=(y,v,,...,ys) IS an N
-dimensional vector of observed responses, A=(RB,,81,....8%'is a (k+1)-dimensional vector

of unknown parameters, and X is an NX(k+1) matrix of rank q(less than full rank) of
known predictors. Since V is positive definite, there exists and NXN matrix K with
HK)= N, such that V=KK .

Let, Z=K 'y,B=K7'X and p=K !¢ then

E()=0, Vari)) =K "Ne* VK~V =3Iy

Then we consider the “transformed” general linear model is the less than full rank and

uncorrelated error model
Z= BB+ 5, Varyg)=c1 .
The (generalized) least square solution is
B=(B'B) " BZ=(XV7'X) XV,
where (B’B) ~ denote any g-inverse of the matrix (B°B). The expectation of /B is

E(H=E(XV'X) "XV yl=H4A.
where
H=(XVx) " XxXVv'x
The expectation of % is not unique and biased. So, we consider the expectation and

- ,/\
variance of ¢ 8

E(c B =B 2-2)
VarlcB)=Valc (X' V7IX) "XV ] = o2 (X' VX)) "¢ (2-3)
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for any estimable function of p.
The unbiased GLS estimator of ¢ is given by

Gi= ey B R (BB
- (Nl_ Sy - VXX VTX) XV
E(sH= o> (2-4)

The mean squared error of ¢ 3 is given by
MSE(¢ B) = Var(¢ =0 (X' V'X) e 2-5)

for any estimable function of 2.

3. Model Misspecification by Underfitting

Let the models be written in matrix form as

(full model) y=X ,8,+X,8,+& Varle)=c’V, (3-1)
(reduced model) v=X,8,+e¢, Vare)=c’V , (-2

where the X matrix has been partitioned into X, of dimension NX(p+1) and X, of
dimension NX7. Suppose the true model is given by the full model. The g vector is
partitioned conformable. Let "3, with components ,(7; and ,{?; denote the least squares

solution of A and let B\; denote the least squares solution of A, in the reduced model. That

is, when we underfitting the true model by the reduced model, we have
B,=(X, VX)X, V. (3-3)
Now the expectation and variance of 5, are
E(B) =HyB,+AB, . (-4

Var B)= (X, VX))~ (3-5)

where,
H=(X,vV'x,) X, v'X,,
A=(X, VX)X, VX, . (3-6)
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Thus we know that ,{;’; is biased. An estimator of ¢ analogous to (2-4) is given by

o L (y—x8) v\ (y—X8,)

> =N-D)
=y YV VX VXY KV
- rxr 1 1 r—1 - 1
E(Gz)z 02+ BrXr(V_ V Xp(]v)(zpv— Xp) Xp V_ )Xrﬂr . (3_7)
which means ;} is also biased, The mean squared error of c';g’; is given by
MSE(c ,63;) = E(c ,(;’;— ' B(c /;’:— By
= (X' VIX) ¢+ AB,B A (3-8)

for any estimable function of 3,.

Theorem 1:
L. ,[;’: is generally biased, interesting exceptional cases being (a) 3,=0 or (b) X, X,=0.
2.4 is generally biased.
3. The matrix Var(8,)— Var(B,) is positive semi-definite.
4. If the matrix Van(B))—B,8, is positive semi-definite, then the matrix MSE(c 5,)
— MSE(c’ 8,) is positive semi-definite.

Proof: Properties 1 and 2 are already proved above. The property 3 is shown as follows.

The variance-covariance matrix of £ is

Var B =6 (X' V%) ~ = Vmi\,b’/p\)/\ Cov(,g;,/é’/,\) _ Ay Al
ar( §=a( ) Cou( B,, By  Var(B,) ’ [AZI AZZ]

where
An=(X, VX)) " +(X, VX)) X, VX, ApX, VXX, V'X,)~ (39
Ap=— (X, V'X,) X, VIX,Ay (3-10)
Ay=—ApX, VIX(X, VX, (31D
Ap=(X, VX, - X, VIX(X, VX)X, VX))~ (3-12)
using the rtesult on the G-inverse of a partitioned matrix (Ravishanker and Dey[2001], Result

3.1.10, for example). Note that the matrix A ,, is positive semi-definite ( Ajy= % Var B ).
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By subtracting (3-5) from A ¢ is

Var( ﬁT;)_ V(ZT( é\/p) = GZ(XPIV_IXP) B "‘AHGZ
=(X,’ VX)X, VXA 2X, VX (X, VX)) ol

positive semi-definite.
The property 4 is shown as follows.

The mean squared error of c’,§; is given by
MSE(C B )= Varc B,) = Ayca. (3-13)
By subtracting (3-8) from (3-13) is

MSE(C B)—MSE(c B)=cAnco® —[(o*c (X, VX ) “ct+ AR B A'C]
= AlA o~ 8,814 = Al Var( B)—B.8,14

positive semi-definite, if the matrix Vas( By— B3, ispsd =
Consider predicted value of the response to a particular input, say x* =(x,’x,’).
E =B+ Bx 1+ +Bp=x'B=%,B,T%,Br
If we use the full model then the predicted value of the response is
(full model) y=x"B=x, 8,+x, B,

which has the expectation and prediction variance are given by

E()=x5 (3-14)
Var{ ) =x(X 'V 'X) “xo. (3-15)

On the other hand, if the reduced model with x, deleted is used, the predicted response is
(reduced model) ;1\; =x, /’3\;,
which has the expectation and prediction variance are given by

E(y)=x,8,+x, A8, , (3-16)
Varly ) =x, (X, VX)) “x,0% G3-17)
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where A is same as in (3-6). Thus we know that y, is biased. The prediction mean squared

error is given by

MSE(y)=E(y,—x'B*=Varl y) +(x, AB,—x, 8% (3-18)

Theorem 2:
L. ;;is biased unless (a) 3,=0 or (b) X, X ,=0.

2. Var 3/\)2 Var( 37;)-
3. If the matrix Var( B,)—8,8, is positive semi-definite, then MSE( y)=MSE( y ).

Proof: Properties 1 is already proved above. The property 2 is shown as follows.

The variance of ; is
Var )= (X 'V 7X) “xo? =(x,, x,’)[ﬁ; ﬁ;ﬁ](if)"z
=x, (X, VX)) 2,00 +x, AA pA'x o' —x, A pA'x ,0°
—xp'AA 929X 70'2 +x r’A 29X ,,0'2. (3‘19)
where A is same as (3-6), from A, to A, are same as (3-9), (3-10), (3-11) and (3-12).
By subtracting (3-17) from (3-19) is ‘
Var(y)— Vary = [A'xy—x,) Ao’ lA'x )= x,] 20. (3-20)

The property 3 is shown as follows.

The mean squared error of yis
MSE(3) = Var(3). (3-21)

then we subtract the mean squared error of y, from (3-21)

MSE(3) — MSE(y) =[ A’z ,)—x,) (Var( B) =B, NAx,~%,]
is positive semi-definite, if the matrix Vas( B — 8,8, is positive semi-definite. m
4. Model Misspecification by Overfitting

We consider the general linear model be partitioned as (3-1). If the model include X ,3,
when it should be excluded(that is, when pB,=0), we say overfitting. When overfitting, the



Variable Selection Theorems in General Linear Model 177

(generalized) least square solution of ,[?; is
B,=(X, VX)X, Vy-X,B,) @1
The expectation of 3, is
E(B)=E(X, VX)) X,V (y=X, B )] = Hp,

where H, is same as (3-6)("-" E(3,)=0). The expectation of E,,\ is not unique and biased.

So, we consider the expectation and variance of ¢’ E;

E(¢ By=El(X, VX)) X, V=X, Bl
=c'(X, VX)X, V'X,8,=c'8, 4-2)
Var(c ,gl,\): a(Xx, V_IXI,) Teol+ AX A pX A col. 4-3)

for any estimable function of 2,.

The unbiased GLS estimator of o2 is given by

Tty - XD - XD
=Tﬁl_—77y'[ VIl vTlX(X VX)XV,
E(6H= o
which means 9 is unbiased.

Theorem 3:
1. 2, and & are unbiased.

2. The matrix Var(c ,é;) — Var(c [5’;) is positive semi-definite.

Proof: Properties 1 is already proved above. The property 2 is shown as follows.

The variance of ¢ 3, is
Var(c [’?\,,’) = (X, VX, "co’ (44)
By subtracting (4-4) from (4-3) is
Var(c ,?;) — Var(c ,[;’:) =CAX,AnX, A col.

Note that the matrix A, is positive semi-definite ( Ay, = -—(;lg Var( B ) by (3-12). =



178 Jeong Soo Park, Sang Hoo Yoon

5. Misspecification in ANCOVA Model

A general formulation of the ANCOVA model is
y=Xr+ZB+ ¢ (5-1)

where y is and N-dimensional vector, X is an NXp design matrix with rank (X)= »<p, «
is a p-dimensional vector of fixed-effects parameters, Z is an NXg regresion matrix with
rank (Z)=g4, B is a g~limensional vector of regression parameters, the columns of X are
linearly independent of the columns of Z, and ¢ has an N-variate normal distribution with

mean vector () and covariance matrix ¢%I, . We can rewrite the model in (5-1) as
y= Wr+ e, where W= (X Z) and y=(2).

The least squares solutions for 4 and r are

B=12'QZ17'Z"Qy,
=(X'X)"X'y—(X'X)"X'ZB

where Q= 7— X(X X)X’ . The expectation of ,73 and 7 are
EB=8 ED=(X"X)X Xr.

The expectation of 3 is unbiased. But the expectation of 7 is not unique and biased. So,

we consider the expectation of ¢t
Ec D=1
for any estimable function of z. The mean squared error of B and 7 are

MSE(®)= Var(B=12'Qz] "%,
MSE(EC )= Var(cd D =c (X 'X) "X co’+c (X 'X) "X WX(X'X) "¢
where W= Z(Z'Q2z) ~'z’, for any estimable function of r.
We have the following theorem as above theorems (with proofs omitted here),

Theorem 4:
1. 3, and 7 are generally biased.

2. The matrix Var( ,@ — Var( ,BN,) is positive semi-definite.
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3. If the matrix Var(B)~— B,8, is positive semi-definite, then MSE(c’ §,) — MSE(c B,)
is positive semi-definite.

4. If the matrix W—W, is positive semi-definite, then Var(c'?)— Var(c'7) is positive
semi-definite, for any estimable function of ..

5. If the matrix (W— W, —(Z,8,—Z,DBXZ,8,—Z,DB,) is positive semi-definite,
then MSE( c’Ar)—MSE(c'Nr) is positive semi-definite, for any estimable function of
z., where W,=Z2,(Z,QZ,) 'z, and D=(Z,QZ,) ~'Z,QZ,

6. Conclusion

The motivation for variable elimination is provided by theorems 1, 2, 3 and 4. That is, if
only the variances of parameter estimates and predictions are concemned, the reduced model
may be preferable. But, since some estimates are biased, the mean squared errors should be
considered. Property 4 of the theorem 1, property 3 of the theorem 2, property 3 and 5 of the
theorem 4 describe that the reduced model is better than the full model in the mean squared
error sense under some conditions. That is, the gain in precision (reduction of variance) is not
offset by the (increased) bias, under some conditions. We will develop the similar result for

the error-in-variable linear model as a future work.
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