• Title/Summary/Keyword: seismicity parameters

Search Result 35, Processing Time 0.023 seconds

Estimation of seismicity parameters of the seismic zones of the Korean Peninsula using incomplete and complete data files (불완전한 자료 및 완전한 자료 목록을 이용한 한반도 지진구들의 지진활동 매개변수 평가)

  • 이기화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.23-30
    • /
    • 1998
  • An estimation of seismic risk parameters by seismic zones of the Korea Peninsula in order to calculate the seismic hazard values using these was erformed. Seven seismic source zones were selected in consideration of seismicity and geology of Korean Peninsula. The seismicity parameters that should be estimated are maximum intensity, activity rate and b value in the Gutenberg - Richter relation. For computation of these parameters, least square method or maximum likelihood method is applied to the earthquake data in two ways; the one for the data without maximum intensity and the other with maximum intensity. Earthquake data since Choseon Dynasty is regarded as complete and estimation of parameters was made for these data using above two ways. And recently, a new method is published that estimate the seismicity parameters using mixed data containing large historical events and recent complete observations. Therefore, this method is applied to the whole earthquake data of the Korean Peninsula. It turns out that the b value computed considering maximum intensity is slightly lower than that computed considering without maximum intensity, and it becomes still lower when the incomplete data prior to Choseon Dynasty is used. In the case of the activity rates, the values obtained without maximum intensity and that with maximum intensity are similar, though they are lower when the incomplete data is used. The values of maximum intensities are usually lower when considering incomplete data. In the seismic source zone including the Yangsan Fault zone, however, the values are higher when considering the incomplete data.

  • PDF

STATUS OF THE PSHA IN KOREA FOR NUCLEAR POWER PLANT SITES

  • Seo, Jeong-Moon;Noh, Myung-Hyun;Chang, Chun-Joong;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1255-1262
    • /
    • 2009
  • This paper introduces the status of and issues related to the PSHA (Probabilistic Seismic Hazard Analysis) of Korean Nuclear Power Plant sites. PSHA was first introduced to the nuclear industry in the mid-1980s. The Korean PSHA is based on Cornell and accommodates the modem approach for eliciting expertise and statistical treatment. Due to the low seismicity in Korea, large uncertainties exist in the PSHA database including seismic source maps, seismicity parameters of seismic sources, and attenuation formulae. Though research in seismology, geology, and earthquake engineering since the mid-1990s has significantly reduced uncertainties, a considerable amount still exists. Considering the low seismicity of the Korean Peninsula, especially the lack of strong motion data, further reduction will take several decades.

Seismic characteristics of Tectonic Provinces of The Korean Peninsula (한반도 주요 지체구조구별 지진학적 특성)

  • 이기화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.64-71
    • /
    • 1999
  • Seismicity of the Korean Peninsula shows intraplate seismicity that has irregular pattern in both time and space. Seismic data of the Korean peninsula consists of historical earthquakes and instrumental earthquakes. In this study we devide these data into complete part and incomplete part and considering earthquake size uncertainty estimate seismic hazard parameters - activity rate λ, b value of Gutenberg-Richter relation and maximum possible earthquake IMAX by statistical method in each major tectonic provinces. These estimated values are expected to be important input parameters in probabilistic seismic hazard analysis and evaluation of design earthquake.

  • PDF

Seismicity and seismic hazard assessment for greater Tehran region using Gumbel first asymptotic distribution

  • Bastami, Morteza;Kowsari, Milad
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.355-372
    • /
    • 2014
  • Considering the history of severe earthquakes and the presence of active faults in the greater Tehran region, the possibility of a destructive earthquake occurring is high and seismic hazard analysis is crucial. Gumbel distributions are commonly-used statistical distributions in earthquake engineering and seismology. Their main advantage is their basis on the largest earthquake magnitudes selected from an equal-time predefined set. In this study, the first asymptotic distribution of extremes is used to estimate seismicity parameters and peak ground acceleration (PGA). By assuming a Poisson distribution for the earthquakes, after estimation of seismicity parameters, the mean return period and the probable maximum magnitude within a given time interval are obtained. A maximum probable magnitude of 7.0 has a mean return period of 100 years in this region. For a return period of 475 years, the PGA in the greater Tehran region is estimated to be 0.39g to 0.42g, depending on local site conditions. This value is greater than that of the Iranian Code for Seismic Design of Buildings, indicating that a revision of the code is necessary.

Minimum loading requirements for areas of low seismicity

  • Lam, Nelson T.K.;Tsang, Hing-Ho;Lumantarna, Elisa;Wilson, John L.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.539-561
    • /
    • 2016
  • The rate of occurrence of intraplate earthquake events has been surveyed around the globe to ascertain the average level of intraplate seismic activities on land. Elastic response spectra corresponding to various levels of averaged (uniform) seismicity for a return period of 2475 years have then been derived along with modifying factors that can be used to infer ground motion and spectral response parameters for other return period values. Estimates derived from the assumption of uniform seismicity are intended to identify the minimum level of design seismic hazard in intraplate regions. The probabilistic seismic hazard assessment presented in the paper involved the use of ground motion models that have been developed for regions of different tectonic and crustal classifications. The proposed minimum earthquake loading model is illustrated by the case study of Peninsular Malaysia which has been identified with a minimum effective peak ground acceleration (EPGA) of 0.1 g for a return period of 2475 years, or 0.07 g for a notional return period of 475 years.

Seismic Hazard Analysis Considering the Incompleteness in the Korean Earthquake Catalog (한반도 지진목록자료의 불완정성을 고려한 지진재해도 분석)

  • 연관희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.413-420
    • /
    • 1998
  • In this paper, two methods, Stepp's and EQHAZARD, are introduced and applied to a recent earthquake catalog for the entire Korean Peninsula that can estimate the seismicity by incorporating the incompleteness of the earthquake catalog. EQHAZARD method, different from Stepp's method in that it used priori information besides the assumption of stationary Poisson process of the earthquakes, produces the higher seismicity rate for the smaller earthquakes. EQHAZARD method are also used to estimated the incompleteness of the recent earthquake catalog for the southern part of the Korean Peninsula in terms of the Probability of Activity for the specified earthquke magnitude classes and time periods. It is believed that the Probability of Activity thus obtained can be used as a strong priori information in estimating the seismicity for a seismic source within the region where there are not enough earthquakes detected. Finally, it is demonstrated that the arbitrary selection of the methods. of incompleteness analysis brings quite different seismic hazard results, which suggests the need to employ a rigid quantitative method for incompleteness analysis in estimating the seismicity parameters in order to reduce the uncertainty in the Seismic Hazard Results with the EQHAZARD method being one of the competent practical alternatives.

  • PDF

Minimum magnitudes of earthquake catalog of Korea Meteorological Agency for the estimation of seismicity parameters (지진활동 매개변수 추정을 위한 기상청 지진목록의 최소규모 분석)

  • Noh, Myung-Hyun;Lee, Sang-Kook;Choi, Kang-Ryong
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.261-268
    • /
    • 2000
  • Minimum magnitudes $(M_c)$ for estimation of seismicity parameters were analyzed for the earthquake catalog of Korea Meteorological Agency (KMA). The temporal variation of earthquake frequency suggests that a proper $M_c$ be 3.0 for the whole southern part of the Korean Peninsula. The b-value with $M_c$ of 3.0 is estimated to be 1.11, which is larger than those of the previous studies. To see the spatial variation of $M_c$, the southern part of the peninsula were divided into grids of $0.1{\times}0.1$ degree. At the greater portion of grid points, the local earthquake catalogs do not satisfy given statistical criteria. The grid points whose local earthquake catalogs meet the criteria mostly distribute in the eastern part. $M_c$ at these points range 2.4 to 3.5 and b values range 0.75 to 1.73 with the average of 1.08 which is comparable to that for the whole southern part of the peninsula.

  • PDF

Focal Depth Factors in the PSH Analysis

  • Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.83-86
    • /
    • 1998
  • The results from the Individual Plant Examination of External Event of Yonggwyang nuclear power plants, unit 3 & 4, in Korea have shown that the high degree of diversities of the experts' opinions on seismicity and attenuation models is su, pp.sed to be generic cause of uncertainty of APEs(annual exceedance probability) in the PAHA(probabilistic seismic hazard analysis). This study investigated the sensitivity of the focal depth, which is one of the most uncertain seismicity parameters in Korea, Significant differences in resultant values of annual exceedance probabilities and much more symmetrical shape of the resultant PDFs(probability density functions), in case of consideration of focal depth, are found. These two results suggest that, even for the same seismic input data set including the seismicity models and ground motion attenuation models, to consider focal depth additionally for probabilistic seismic hazard analysis evaluation makes significant influence on the distributions of uncertainties and probabilities of exceedance per year for the whole ranges of seismic hazard levels. These facts suggest that it is necessary to derive focal depth parameter more effectively from the historical and instrumental documents on earthquake phenomena in Koran Peninsula for the future study of PSHA.

  • PDF

Seismic Characteristics of Tectonic Provinces of the Korean Peninsula (한반도 주요 지체구조구별 지진학적 특성)

  • Lee, Kie-Hwa;Kim, Jung-Ki
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.91-98
    • /
    • 2000
  • The seismicity of the Korean Peninsula shows a very irregular pattern of strain release typical of the intraplate seismicity. The Korean Peninsula may be divided into several tectonic provinces of differing tectonics. In this analysis, seismicity parameters for each tectonic province are evaluated from historical as well as instrumental earthquake data of the Korean Peninsula to examine the differences in seismic characteristics among tectonic provinces. Statistical analysis of the earthquake data made of incomplete data before the Choseon Dynasty and complete data afterwards reveals that there exist no significant differences in seismic characteristics between the tectonic provinces. It turns out the b-value in the intensity-frequency relation for the whole peninsula is about 0.6 and the maximum earthquake is about MMI X. The results of this study may be used in the probabilistic seismic hazard analysis of the Korean Peninsula and in estimating the design earthquake in earthquake engineering.

  • PDF

Optimum Life-Cycle Cost-Effective Seismic Design for Continuous PSC Bridges Considering Lifetime Expected Seismic Risks (구조 수명간 지진위험도를 고려한 연속 PSC교의 LCC 최적 내진설계)

  • Cho Hyo Nam;Lee Kwang Min;Park Kyung Hoon;Kim Pyung Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.720-723
    • /
    • 2004
  • This study is intended to propose a systematic approach for determining optimum Life-Cycle Cost (LCC)-effective seismic design for continuous PSC bridges considering lifetime expected seismic risks. In the paper, a set of cost function for LCC analysis of bridges is proposed. The total LCC functions consist of initial cost and direct/indirect damage costs considering repair/replacement costs, human losses and property damage costs, road user costs, and indirect socio-economic losses. The damage costs are expressed in terms of Park-Ang median global damage indices (Park and Ang, 1985) and lifetime damage probabilities. The proposed approach is applied to model bridges of both moderate seismicity regions like Korea and high seismicity regions like Japan. Since, in case of bridges, a number of parameters may have an influence on optimal target reliability, various sensitivity analyses are performed in this study. It may be expected that the proposed approach can be effectively utilized for the development of cost-effective performance criteria for design and upgrading of various types of bridges as well as continuous PC bridges.

  • PDF