• Title/Summary/Keyword: seismic-excited structures

Search Result 55, Processing Time 0.022 seconds

Probabilistic distribution of displacement response of frictionally damped structures excited by seismic loads

  • Lee, S.H.;Youn, K.J.;Min, K.W.;Park, J.H.
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.363-372
    • /
    • 2010
  • Accurate peak response estimation of a seismically excited structure with frictional damping system (FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated the peak response of the structure with FDS by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In case that earthquake excitation is defined probabilistically, corresponding response of the structure with FDS becomes to have probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake excitation generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Coefficients of the proposed PDF are obtained by regression of the statistical distribution of the time history responses. Finally, the correlation between the resulting PDFs and statistical response distribution is investigated.

A semi-active acceleration-based control for seismically excited civil structures including control input impulses

  • Chase, J. Geoffrey;Barroso, Luciana R.;Hunt, Stephen
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.287-301
    • /
    • 2004
  • Structural acceleration regulation is a means of managing structural response energy and enhancing the performance of civil structures undergoing large seismic events. A quadratic output regulator that minimizes a measure including the total structural acceleration energy is developed and tested on a realistic non-linear, semi-active structural control case study. Suites of large scaled earthquakes are used to statistically quantify the impact of this type of control in terms of changes in the statistical distribution of controlled structural response. This approach includes the impulses due to control inputs and is shown to be more effective than a typical displacement focused control approach, by providing equivalent or better performance in terms of displacement and hysteretic energy reductions, while also significantly reducing peak story accelerations and the associated damage and occupant injury. For earthquake engineers faced with the dilemma of balancing displacement and acceleration demands this control approach can significantly reduce that concern, reducing structural damage and improving occupant safety.

Response of the structures excited by the near fault ground motion (Near Fault Ground Motion에 의한 구조물의 거동 특성 연구)

  • Kim, Jae-Kwan;Kim, Jung-Han
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.42-46
    • /
    • 2005
  • Ground motions with the near fault effects are studied for the seismic design and the analysis of structures. The characteristics of the velocity pulse by the forward directivity are studied and the relations between velocity pulse and earthquake magnitude are investigated. The elastic response spectra of the near fault ground motion are compared with these of the far fault ground motion. And effects on the behaviors of structures are studied by the analysis of the elastic and the inelastic single degree of freedom system in terms of the response spectrum and the ductility demand.

  • PDF

Shaking Table Test of a Full Scale 3 Story Steel Frame with Friction Dampers (마찰형 감쇠장치가 설치된 실물크기 3층 철골프레임의 진동대 실험)

  • Bae, Chun-Hee;Kim, Yeon-Whan;Lee, Sang-Hyun;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.862-873
    • /
    • 2007
  • Energy dissipation devices can be considered as an alternative for the seismic performance enhancement of existing structures based on the strengthened seismic design code. In this study, seismic response mitigation effects of friction dampers are investigated through the shaking table test of a full scale 3 story building structure. Frist, the bilinear force-displacement relationship of a structure-brace-friction damper system and the effect of brace-friction damper on the increase of frequency and damping ratio are identified. Second, frequency, displacement, and torque dependent characteristics of the friction damper are investigated by using harmonic load excitation tests. Finally, the shaking table tests are performed for a full scale 3 story steel frame. System identification results using random signal excitation indicated that brace-friction damper increased structural damping ratio and frequency, and El Centro earthquake test showed that brace-friction damper reduced the peak displacement and acceleration significantly. In particular, it was observed that the damping effect due to friction damper becomed obvious when the structure was excited by more intensive load causing frequent slippage of the friction dampers.

A study on the effects of vertical mass irregularity on seismic performance of tunnel-form structural system

  • Mohsenian, Vahid;Nikkhoo, Ali
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.131-141
    • /
    • 2019
  • Irregular distribution of mass in elevation is regarded as a structural irregularity by which the modes with high energy levels are excited and in addition, it can lead the structure to withstanding concentration of nonlinear deformations and consequently, suffer from unpredictable local or global damages. Accordingly, with respect to the lack of knowledge and insight towards the performance of concrete buildings making use of tunnel-form structural system in seismic events, it is of utmost significance to assess seismic vulnerability of such structures involved in vertical mass irregularity. To resolve such a crucial drawback, this papers aims to seismically assess vulnerability of RC tunnel-form buildings considering effects of irregular mass distribution. The results indicate that modal responses are not affected by building's height and patterns of mass distribution in elevation. Moreover, there was no considerable effect observed on the performance levels under DBE and MCE hazard scenarios within different patterns of irregular mass distribution. In conclusion, it appears that necessarily of vertical regularity for tunnel-form buildings, is somehow drastic and conservative at least for the buildings and irregularity patterns studied herein.

A new control approach for seismic control of buildings equipped with active mass damper: Optimal fractional-order brain emotional learning-based intelligent controller

  • Abbas-Ali Zamani;Sadegh Etedali
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.305-315
    • /
    • 2023
  • The idea of the combination of the fractional-order operators with the brain emotional learning-based intelligent controller (BELBIC) is developed for implementation in seismic-excited structures equipped with active mass damper (AMD). For this purpose, a new design framework of the mentioned combination namely fractional-order BEBIC (FOBELBIC) is proposed based on a modified-teaching-learning-based optimization (MTLBO) algorithm. The seismic performance of the proposed controller is then evaluated for a 15-story building equipped with AMD subjected to two far-field and two near-field earthquakes. An optimal BELBIC based on the MTLBO algorithm is also introduced for comparison purposes. In comparison with the structure equipped with a passive tuned mass damper (TMD), an average reduction of 44.7% and 42.8% are obtained in terms of the maximum absolute and RMS top floor displacement for FOBELBIC, while these reductions are obtained as 30.4% and 30.1% for the optimal BELBIC, respectively. Similarly, the optimal FOBELBIC results in an average reduction of 42.6% and 39.4% in terms of the maximum absolute and RMS top floor acceleration, while these reductions are given as 37.9% and 30.5%, for the optimal BELBIC, respectively. Consequently, the superiority of the FOBELBIC over the BELBIC is concluded in the reduction of maximum and RMS seismic responses.

Guidelines of Designing Lead Rubber Bearing for a Cable-Stayed Bridge In Control Seismic Response (사장교의 지진 응답 제어를 위한 납고무 받침의 설계 기준 제안)

  • 이성진;박규식;김춘호;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.509-516
    • /
    • 2003
  • In tile design of base isolation system for building and short-span bridge, shift of the natural period of the structure is main objective. But, most long-span bridges such as a cable-stayed bridges have a number of long-period modes due to their flexibility and small structural damping. thus the design concept of base isolation system for building and short-span brigde may be difficult to use directly to these structures. However, the effectiveness of LRB for cable-stayed bridges is indicated by Ali and Abdel-Ghaffar. In this study, the design procedure and guidelines of LRB for a seismically excited cable-stayed bridge are investigated. The design properties of LRB are chosen that the design index(DI) is minimized or little changed for variation of properties. This result show that the stiffer rubber and bigger lead core size are need to cable-stayed bridges. And the seismic performance of designed LRB is also investigated. The consequences show that the perforamnce of designed LRB is better than that of Naeim-Kelly mettled designning LRB for general building structures. Moreover, the design properties of LRB are researched to several diffrent dominant frequency of earthquake. The results present that the plastic and elastic stiffness of LRB are affected by the dominant frequency of earthquake.

  • PDF

Passive control of seismically excited structures by the liquid column vibration absorber

  • Konar, Tanmoy;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.561-573
    • /
    • 2010
  • The potential of the liquid column vibration absorber (LCVA) as a seismic vibration control device for structures has been explored in this paper. In this work, the structure has been modeled as a linear, viscously damped single-degree-of-freedom (SDOF) system. The governing differential equations of motion for the damper liquid and for the coupled structure-LCVA system have been derived from dynamic equilibrium. The nonlinear orifice damping in the LCVA has been linearized by a stochastic equivalent linearization technique. A transfer function formulation for the structure-LCVA system has been presented. The design parameters of the LCVA have been identified and by applying the transfer function formulation the optimum combination of these parameters has been determined to obtain the most efficient control performance of the LCVA in terms of the reduction in the root-mean-square (r.m.s.) displacement response of the structure. The study has been carried out for an example structure subjected to base input characterized by a white noise power spectral density function (PSDF). The sensitivity of the performance of the LCVA to the coefficient of head loss and to the tuning ratio have also been examined and compared with that of the liquid column damper (LCD). Finally, a simulation study has been carried out with a recorded accelerogram, to demonstrate the effectiveness of the LCVA.

Experimental and numerical study on the dynamic behavior of a semi-active impact damper

  • Zheng Lu;Mengyao Zhou;Jiawei Zhang;Zhikuang Huang;Sami F. Masri
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.455-467
    • /
    • 2023
  • Impact damper is a passive damping system that controls undesirable vibration with mass block impacting with stops fixed to the excited structure, introducing momentum exchange and energy dissipation. However, harmful momentum exchange may occur in the random excitation increasing structural response. Based on the mechanism of impact damping system, a semi-active impact damper (SAID) with controllable impact timing as well as a semi-active control strategy is proposed to enhance the seismic performance of engineering structures in this paper. Comparative experimental studies were conducted to investigate the damping performances of the passive impact damper and SAID. The extreme working conditions for SAID were also discussed and approaches to enhance the damping effect under high-intensity excitations were proposed. A numerical simulation model of SAID attached to a frame structure was established to further explore the damping mechanism. The experimental and numerical results show that the SAID has better control effect than the traditional passive impact damper and can effectively broaden the damping frequency band. The parametric studies illustrate the mass ratio and impact damping ratio of SAID can significantly influence the vibration control effect by affecting the impact force.

Development of Control Algorithm for Effective Simultaneous Control of Multiple MR Dampers (다중 MR 감쇠기의 효과적인 동시제어를 위한 제어알고리즘 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.91-98
    • /
    • 2013
  • A multi-input single-output (MISO) semi-active control systems were studied by many researchers. For more improved vibration control performance, a structure requires more than one control device. In this paper, multi-input multi-output (MIMO) semi-active fuzzy controller has been proposed for vibration control of seismically excited small-scale buildings. The MIMO fuzzy controller was optimized by multi-objective genetic algorithm. For numerical simulation, five-story example building structure is used and two MR dampers are employed. For comparison purpose, a clipped-optimal control strategy based on acceleration feedback is employed for controlling MR dampers to reduce structural responses due to seismic loads. Numerical simulation results show that the MIMO fuzzy control algorithm can provide superior control performance to the clipped-optimal control algorithm.